
EE/CSE371, Spring 2024L08: ASMD III

Design of Digital
Circuits and Systems
ASM with Datapath III

Instructor: Justin Hsia

Teaching Assistants:

Colton Harris Deepti Anoop

Gayathri Vadhyan Jared Yoder

Lancelot Wathieu Matthew Hung

EE/CSE371, Spring 2024L08: ASMD III

Relevant Course Information

❖ Homework 3 due tomorrow

❖ Homework 4 released today and due 4/29

▪ ASMDs and algorithm implementation debugging

❖ Quiz 2 (ROM, RAM, Reg files) @ 11:50 am

❖ Lab 3 reports due next Friday (4/26)

▪ Ideally finish by early next week so you can start Lab 4

❖ Lab 4 released today and due 5/3

▪ Implementing bit counting and binary search algorithms

2

EE/CSE371, Spring 2024L08: ASMD III

ASMD Chart Review Questions

❖ Circle all that apply:
▪ Where can control signals be found?

State boxes Decision boxes Conditional output boxes

▪ Where can status signals be found?

State boxes Decision boxes Conditional output boxes

▪ Where can external input signals be found?

State boxes Decision boxes Conditional output boxes

▪ What is the first thing a path should encounter in an ASM block?

State boxes Decision boxes Conditional output boxes

▪ What can be found outside of ASM blocks?

State boxes Decision boxes Conditional output boxes

▪ What can RTL operations be attached to?

Control signals Status signals External output signals
3

EE/CSE371, Spring 2024L08: ASMD III

Sequential Binary Multiplier Operation

4

❖ A few steps of:
11010111

x 00010111

Operation (completed) C A Q P

Initialize computation 0 00000000 00010111 1000

EE/CSE371, Spring 2024L08: ASMD III

Binary Multiplier (ASMD Chart)

5

EE/CSE371, Spring 2024L08: ASMD III

ASMD Process Review

1) Identify datapath components, control signals, and status
signals from description or pseudocode.

2) [optional] Create control-datapath circuit diagram.

3) [optional] Create state outline to plan out states and
transitions between them.

4) Draw out ASM state boxes, decision boxes, and paths
between them.

5) Augment state boxes with Moore-type outputs and add
conditional output boxes with Mealy-type outputs.

6) Add ASM blocks to organize states.

7) Add RTL operations to control signals.

8) Double-check decision box edge cases and timing of
operations (i.e., debug).

6

EE/CSE371, Spring 2024L08: ASMD III

Short Tech

Break
7

EE/CSE371, Spring 2024L08: ASMD III

❖ Design a circuit that implements the long-division
algorithm:

❖ Considerations:

▪ Main operations?

▪ Stop condition?

Division Circuit

8

EE/CSE371, Spring 2024L08: ASMD III

Division Circuit

❖ Design a circuit that implements the long-division
algorithm:

1) Double the dividend width by appending 0’s in front and
align the divisor to the leftmost bit of the extended
dividend.

2) If the corresponding dividend bits are ≥ the divisor,
subtract the divisor from the dividend bits and make the
corresponding quotient bit 1. Otherwise, keep the original
dividend bits and make the quotient bit 0.

3) Append one additional dividend bit to the previous result
and shift the divisor to the right one position.

4) Repeat steps 2 and 3 until all dividend bits are used.

9

EE/CSE371, Spring 2024L08: ASMD III

❖ Implementation Notes:

▪ If current dividend window is smaller than the divisor, skip
subtraction

▪ Instead of shifting divisor to the right, we will shift the
dividend (and the quotient) to the left

▪ We will re-use the lower half of the dividend register to
store the quotient

Division Circuit

10

EE/CSE371, Spring 2024L08: ASMD III

Division Circuit Operation

11

❖ A few steps of:

0010⌡1111

Op (done) B R Q q_bit R_tmp R_nxt Q_nxt P

Initialize 0010 0000 1111 0 0000 0001 1110 100

divisor (𝐵)

dividend
window (𝑅)

dividend/
quotient (𝑄)

𝑅_𝑡𝑚𝑝 𝑞_𝑏𝑖𝑡

𝑅_𝑛𝑥𝑡 𝑄_𝑛𝑥𝑡

EE/CSE371, Spring 2024L08: ASMD III

Division Circuit Specification

❖ Datapath

▪ 2𝑛-bit register with bits split into 𝑛-bit 𝑅 and 𝑛-bit 𝑄

▪ Divisor stored in register 𝐵, dividend stored in 𝑄, 𝑅 holds 0

▪ A “compare and subtract” module outputs
{𝑅, 0} if 𝑅 < 𝐵 and {𝑅 − 𝐵, 1} otherwise ({𝑅_𝑡𝑚𝑝, 𝑞_𝑏𝑖𝑡})

▪ A shifter left shifts 𝑞_𝑏𝑖𝑡 into {𝑅_𝑡𝑚𝑝, 𝑄} and outputs to the
inputs of 𝑅 and 𝑄

▪ A log2 𝑛 + 1 -bit counter 𝑃

❖ Control

▪ Inputs 𝑆𝑡𝑎𝑟𝑡 and 𝑅𝑒𝑠𝑒𝑡, outputs 𝑅𝑒𝑎𝑑𝑦 and 𝐷𝑜𝑛𝑒

▪ Status signals:

▪ Control signals:
12

EE/CSE371, Spring 2024L08: ASMD III

Division Circuit (ASMD Chart)

13

EE/CSE371, Spring 2024L08: ASMD III

Division Circuit Implementation

❖ Controller Logic

14

𝐿𝑜𝑎𝑑_𝑟𝑒𝑔𝑠 =

𝐸𝑛𝑎𝑏𝑙𝑒_𝑅𝑄 =

𝐹𝑖𝑛𝑖𝑠ℎ_𝑅𝑄 =

𝐷𝑒𝑐𝑟_𝑃 =

𝑅𝑒𝑎𝑑𝑦 =

𝐷𝑜𝑛𝑒 =

EE/CSE371, Spring 2024L08: ASMD III

Division Circuit (SV, Datapath)

15

module datapath #(parameter WIDTH=4)
(Q, P, divisor, dividend, clk,
Load_regs, Enable_RQ, Enable_R, Decr_P);

// port definitions
output logic [2*WIDTH-1:0] product;
output logic [WIDTH-1:0] Q, P; // note: unnecessary bits for P
input logic [WIDTH-1:0] multiplicand, multiplier;
input logic clk, Load_regs, Shift_regs, Add_regs, Decr_P;

// internal logic
logic [WIDTH-1:0] B, R, R_tmp, R_nxt;
logic q_bit;

endmodule

EE/CSE371, Spring 2024L08: ASMD III

Division Circuit (SV, Datapath)

16

module datapath #(parameter WIDTH=4)
(Q, P, divisor, dividend, clk,
Load_regs, Enable_RQ, Enable_R, Decr_P);

// port definitions & internal logic
...

// assignments
assign q_bit = (R >= B);
assign R_tmp = (R < B) ? R : R-B;
assign R_nxt = {R_tmp[WIDTH-2:0], Q[WIDTH-1]};
assign Q_nxt = {Q[WIDTH-2:0], q_bit};

// datapath logic
always_ff @(posedge clk) begin

if (Load_regs) begin
R <= 0; Q <= dividend;
P <= WIDTH; B <= divisor;

end
if (Decr_P) P <= P - 1;
if (Comp_regs) {R, Q} <= {R_nxt, Q_nxt};
if (Done_regs) {R, Q} <= {R_tmp, Q_nxt};

end // always_ff

endmodule

EE/CSE371, Spring 2024L08: ASMD III

Lab 4 Preview: Bit Counter

❖ Design a circuit that counts the number of bits in a
register 𝐴 that have the value 1

❖ Algorithm:

17

B = 0; // counter
while A != 0 do

if A[0] = 1 then
B = B + 1

endif
A = A >> 1

endwhile

