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Relevant Course Information

% Quiz 3 starts at 11:50 am
+» Lab 4 due Friday (5/3), demos next week

+» Homework 5 released today, due next Friday (5/10)
= Static Timing Analysis and Pipelining

+» Lab 5 released today, due in two weeks (5/17)
®" Hardest lab for many students
" You will need to use the VGA interface on LabslLand

" There’s a creative component and opportunity for extra
credit
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destination register’s clock latency

= Add delay in the data path with buffers or pairs of inverters
(done automatically by Quartus)

+ Fixing setup violations: data arrives too late
compared to the destination register’s clock speed

= Slow down the clock (undesirable)

= Tell fitter to try harder or confine logic to a smaller area
= Rewrite code to simplify logic
oy Add pipelining (today!)
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Pipelining

+ Pipelining is a set of data processing elements
connected in series with buffer storage inserted
between

" |n digital systems, the buffer storage are FFs & registers and
data processing elements are stages of combinational logic

" |nits simplest form, can be thought of as adding registers in
the middle of a computation to reduce our clock period
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Performance

+» What does it mean to say X performs better than Y?

+ Silly example: a Tesla vs. a school bus
= 2015 Tesla Model S P90OD

- 5 passengers, 2.8 secs in quarter mile

= 2011 Type D school bus

- Up to 90 passengers, quarter mile time?
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Measurements of Performance

+» Latency (or response time or execution time)

" Time to complete one task

+» Throughput (or bandwidth)

" Tasks completed per unit time
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Analogy: Doing Laundry

+» Deepti, Gayathri, Jared, and Lancelot
each have one load of clothes to

€

wash,@dry,@’)fold, and@put away

Washer takes 30 minutes

Dryer takes 30 minutes

“Folder” takes 30 minutes

“Stasher” takes 30 minutes to put clothes
into drawers

EE/CSE371, Spring 2024
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Sequential Laundry

Time
6PM 7 8 9 10 11 12 1 2AM
IElaoI 30 I5'30I 30 I5'30'3.0 30'5'3.0I 30
Task “
Order g u k

= Sequential laundry takes 8 hours for 4 Ioads
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Pipelined Laundry
Time
6PM 7 8 9 10 11 12 1 2AM
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Pipelining Notes

+ Pipelining helps throughput 6PM 7 8 9
of overall workload, but not
latency of single task

= Reduction in critical pathway
allows for shorter clock period

Task Order

P
«

+» Multiple tasks operating
simultaneously using different resources

= Executing different parts of multiple computations at the
same time using the same hardware — like an assembly line

" Greater utilization of logic resources
11
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Pipelined Performance Example

» Assume t-p =10 ns, t ;44 =90 ns, top; =50 ns
= For simplicity, assume t ;, = tyjre =t =ty =0
+ Solve for the minimum clock period for each circuit

" Given this minimum clock period, solve for the latency and
throughput of each circuit

o . . Reg1 Reg2
. CIrCUIt 1- |nput10100‘ z? /1‘3:3
Input2}0 0 1 1P_D Q‘q: 2 D Q] 1 10 gJoutput
Tﬁ;/\ = lgo ns I 1 cleck eyc\e Z
CLKE

+hrou5kpud'= /7T = ‘/(Iw v\s) “
loftency =T+4,= [(Ong  cvffal poth = Zeo +tanTEyy € T -t

Reg?

Reg1
[4

= CirCUit 2: Input1j0 1 0 Of zi
Toin = 100 s Input2|0 0 1 1} E),Q D afF S oueut
‘Hﬂrwjlap..:l' = /T= l/((\)o ns) CLKE 1 f""
lﬁ’tev\ﬁ\/ = ZT"'ﬂo = 2.(0 ny Ql‘\’*'-‘(&‘ ‘»*L\ S Mman Cdca 4 66’& ) ((,* i"".) é ’r - i}\)#

12



YA UNIVERSITY of WASHINGTON L12: Pipelining

EE/CSE371, Spring 2024

Pipeline Performance

% In theory, can measure “speedup” as the ratio in time
per completion (TC) of computations

TCoriginal

= speedup =

TCpipelined
= speedup,x = # of pipeline stages

= Speedup is reduced by unbalanced stages (and tp):
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Technology
Break

14
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Pipeline Registers

+» Where to add pipeline registers?

" For a given computation, all paths from any input to output
must pass through the same number of pipeline registers

» Example: y; = (a; X b;) X ¢; + d;
[
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Pipeline Registers
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+» Where to add pipeline registers?

" For a given computation, all paths from any input to output
must pass through the same number of pipeline registers

» Example: y; = (a; X b;) X ¢; + d;

= Signal flow:
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Data Flow Graph

+» A data flow graph (DFG) is a visualization tool that
can be used to simplify circuits into directed graphs
= Nodes are computations (and their delays)
= Edges represent data dependencies

Y = albxc)

7 = (erx)de +€
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Pipeline Cutset

+~ A cutset is a set of edges that form two disjoint
graphs when removed/cut
" Feedforward cutset: data travels only forward in the cutset
= Feedback cutset: data travels in both directions in the cutset

+ Pipelining is done by placing a register along every
edge in a pipeline (feedforward) cutset:

Pipeline_ Shuge 1. | -STage 2. Pipeline
rcglslcry‘ _b)/ cutset ('Ffed ﬁfwwff)‘)

AN

Not a
pipeline
cutset
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Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node
= For simplicity, assume t,p = 0
= QOriginal (non-pipelined) performance:

ool petl s Aelay of (21 FHISHEHTAIH = 5

lT"‘"‘:gS‘ AN late,‘c\’ > 15}
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Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node

" Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation

 For simplicity, assume top = 0
Examp(c ]-I

2- stuge deme
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Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node

" Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation
 For simplicity, assume top = 0

Exame e 2
3-stage pipelme

21
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Pipeline Cutset Example

+» The following data flow graph shows the propagation
delay in each node

" Create 2-3 different pipelined versions of this DFG and
compute the maximum delay of each stage and minimum
clock period for the pipelined computation
- For simplicity, assur;\/e tco =0
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Pipeline Design Questions

+» When should | add pipelining?
= Check ifitis possible first (i.e., a pipeline cutset must exist)
= Want to reduce the critical path in your computation/system
" Your system can afford the increase in latency and hardware

+» Where do the pipeline registers go?
" Must be placed at proper pipeline cutsets

" Want to make pipeline stages as balanced as possible to
maximize speedup

23
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Design Example: 16-bit Ripple-Carry Adder

+~ Problem: C,, takes a long time to compute!
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Desigh Example: 16-bit Pipelined Adder
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Desigh Example: 16-bit Pipelined Adder

clock (1) (2) (3) (4) (5)

|

a X apag(1) apag(2) apagr(3)
b X by br(1) b br(2) by br(3)
IR X ayagby br(l) | ayarbyibr(2) | ayarbybr(3)
PR ay by (1) sumg(1)ay by (2) sumg(2)lay by (3) sumg(3)
OR X sumy (1) sumg(1)|sumy (2) sumg(2)|sumy (3) sumg(3)
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Design Example: FIR Filter
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Desigh Example: Pipelined FIR Filter
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