
CSE 374 Lecture 16
Week 6: More preprocessor, Multiple Files



Compiling in 
more detail

Compilation process is actually 
multi-step

Multi-file compilation requires 
knowing more details



# Stop after the preprocessor and
   store the preprocessed C file in
   file.pp
   $ gcc -E file.c > file.pp

# Stop after the compiler and store
   the assembly code in file.s
   $ gcc -S file.c

# Stop after the assembler and
   store the machine code in file.o
   $ gcc -c file.c



Preprocessor Review       (and header files)

The preprocessor rewrites
code before the compiler
gets it.

Has multiple roles:
Include header files
Define Constants
Define Macros
Conditional Compilation

#include <stdlib.h>
#include <userfile.h>
Header files
    Always use .̒h ,̓ 
    Headers include function, struct,
        constant declarations
    Never include function implementations
    Never include .̒cʼ
$gcc -l : look in specific 
directories 



Include file clarity

1. You create a .h file to share code with another calling module 
a. Declare any variables and functions you want another caller to user
b. Functions you want to use only in the same file are declare in the .c file
c. Include libraries needed to compile the header file

2. If you have a.c, which uses printf include <stdio.h> in a.c
3. If you also have b.c, which uses printf, you could include 

<stdio.h> in “a.h” and not in a.c or b.c, however
4. Generally, include any header files needed for directly-called functions 

(promotes encapsulation), so b.c would include <stdio.h>



Symbolic Constants & Macros
➔ Creates TOKEN to represent more 

text
➔ Preprocessor:

◆ Replaces all matching TOKENS in 
rest of file

◆ Knows where words start and end
◆ Has no notion of scope (not the 

compiler)
➔ Can shadow another #define
➔ Use #undef to remove

Constants:

#define SYMBOLIC_CONSTANT value
#define NOT_PI 22/7 
#define VERSION 3.14 
#define FEET_PER_MILE 5280 
#define MAX_LINE_SIZE 5000 



Macros
Replace all matching “calls” with “body” 
but with text of arguments where the 
parameters are (just string substitution)

Gotchas (understand why!)  ->

Macros DO NOT avoid performance 
overhead of a function call (maybe true in 
1975, not now)

Macros CAN BE more flexible though 
(type-inspecific)

#define TWICE_AWFUL(x) x*2 
#define TWICE_BAD(x) ((x)+(x)) 
#define TWICE_OK(x) ((x)*2) 
double twice(double x) { 

return x+x; }

y=3;
z=4; 
w=TWICE_AWFUL(y+z);     [y+z*2]
z=TWICE_BAD(++y);            [++y + ++y]
z=TWICE_BAD(y++);            [y++ + y++] 



Macros: debugging

Remember - itʼs just 
pure string 
replacement.

#define TWICE_AWFUL(x) x*2

int main(int argc, char **argv) {
  int x = 1;
  int y = 2;

  // This gives 5 instead of 6
  printf("Twice(1+2) is 6, but %d\n",
    TWICE_AWFUL(x+y));

  ...



Macros: debugging

Remember - itʼs just 
pure string 
replacement.

#define TWICE_AWFUL(x) x*2

int main(int argc, char **argv) {
  int x = 1;
  int y = 2;

  // This gives 5 instead of 6
  printf("Twice(1+2) is 6, but %d\n",
    x+y*2;

  ...



Justifiable Macros
Parameterized macros are generally to be avoided (use functions)

There are things functions cannot do:

#define NEW_T(t, howmany) ((t*)malloc((howmany)*sizeof(t)) 

#define PRINT(x) printf("%s:%d %s\n", __FILE__, __LINE__,x)

Be very careful with syntax if you do use them



Conditional Compilation

#ifdef FOO
// only compiled if FOO is defined
#endif

#ifndef FOO
// only compiled if NOT FOO
#endif

#if FOO > 2
// only compiled if FOO > 2
#endif

// use DBG_PRINT for debug-printing
#ifdef DEBUG 
#define DBG_PRINT(x) printf("%s",x)
#else
// replace with nothing
#define DBG_PRINT(x) 
#endif

DBG_PRINT("hello world!\n");

$ gcc -D DEBUG foo.c   
// or with #define



#ifndef:  header file inclusion
#ifndef FOO_H 

#define FOO_H 

      and end it with: 

#endif

● Assuming nobody else defines SOME_HEADER_H 
(convention)
○ first #include "some_header.h" will do the define 

and include the rest of the file
○ second and later will skip everything

● More efficient than copying the prototypes over 
and over again

● In presence of circular includes, necessary to 
avoid “creating” an infinitely large result of 
preprocessing 



Global Variables
Declared with normal 
syntax, but outside any 
functions

Must be declared 
within file to be 
ʻknownʼ (could be put 
in header).

#include <stdio.h>

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)

int ex_global;

int main(int argc, char **argv) {



Extern & Static Variables
● Global variables have space allocated in 

the global memory section, not the 
stack.

○ Persist and can be used by all the 
functions within scope

○ This is within the same source file
○ UNLESS, keyword extern  is used
○ If you want to use a global variable 

across multiple source files put an 
extern declaration in the header file

extern int var = 0;
int main(void) {
 var = 10;
 return 0;
}

● C keyword static allocates space in the 
global memory section, not the stack.

○ Memory persists outside of scope
○ Can not have a static variable in a struct

int fun() {
  static int count = 0;
  count++;
  return count;
}

● A static function limits the scope of the 
function

○ Only  called within the same source file
○ Allows for encapsulation



Static-Global Variables
Using ʻstaticʼ with global variables, 
or with functions explicitly limits 
visibility to current module.

In truth, if you HAVE to use global 
variables, you should always make 
them static; C doesnʼt require this 
but it is good software engineering.

Notes:  Using ‘static’ here is 
promoting encapsulation - a 
concept strongly developed in 
object oriented programming.  It 
allows you to repeat names in 
different modules, and to limit 
visibility for implementation 
control.



Linked List Continued
● One set of code to define 

linked list:
○ Linkedlist.h
○ Linkedlist.c

● Another piece of code uses it:
○ Linkedlistclient.c 
○ #include “linkedlist.h”

Compile with

$gcc -o lldemo linkedlist.c
linkedlistclient.c

lldemo

linkedlist.h

linkedlist.o linkedlistclient.o

linkedlist.c linkedlistclient.c



Dependency Tree - helps decide what to do

Each target T is dependent on one or more sources S
If any S is newer than T, remake T.

Recursive:  If a source is also a target for other sources, must also evaluate its 
dependencies and possibly remake

lldemo

linkedlist.h

linkedlist.o linkedlistclient.o

linkedlist.c linkedlistclient.c

Directed-acyclic-graph 
(cycles make no sense)


