## CSE 374: Lecture 21

Hexadecimal and number storage

## Number systems and BASE

Generally use base 10
(10 fingers)
234
$2 \times 100+3 \times 10+4 \times 1$
$2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}$

Digital systems - base 2
(binary)
$234=0 b 11101010$
$1 \times 2^{7}+1 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4}+$ $1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$

Base 16 - very compact (hexadecimal)

234 = 0xEA
$14 \times 16^{1}+10 \times 16^{0}$

Need 16 digits, so we used [0-9A-F]

Notice: 234 takes $\mathbf{3}$ digits to express in base 10, 8 in base 2, and 2 in base 16.

## Integer representations

$\rightarrow$ The hardware (and C) supports two flavors of integers

- unsigned - only the non-negatives
- signed - both negatives and non-negatives
$\rightarrow$ There are only $2^{\mathrm{W}}$ distinct bit patterns of W bits, so...
- Cannot represent all the integers
- Unsigned values: $0 \ldots 2^{\mathrm{W}}-1 \quad<=2^{4}-1$-> 1111 -> $2^{3}+2^{2}+2^{1}+2^{0}$-> 8+4+2+1 $->15$
- Signed values: $-2^{\mathrm{W}-1} \ldots 2^{\mathrm{W}-1}-1$
$\rightarrow$ Reminder: terminology for binary representations
"Most-significant" / "high-order" bit(s) "Least-significant" / "low-order" bit(s)
0010010110101011


## Signed Ints (obvious solution)

4 bit signed int Most significant bit is reserved for the sign Changes the range to $\left[-2^{w-1}-1,2^{w-1}-1\right]$

|  | $\left[\begin{array}{lll} \\ 2^{W-1} & 1,2\end{array}\right]$ | -5 1110 | 0001 + 2 |
| :---: | :---: | :---: | :---: |
|  |  | 1101 | 0010 |
| Adding unsigned ints : (add and carry normally) | Adding signed ints : (gets tricky - notice | -4 1100 | + + |
|  | $4-3!=4+-3)$ | -3 1011 | $0100+$ |
| 0101 |  | 1010 | 0101 |
| +0011 | 0100 | -2 | 1010 + |
| ------ | +1011 |  | + |
| 1000 | ------ | -1 | $+6$ |
|  | $1111=15$ |  |  |

## Twos-complement

Old version - notice the two different representations of ' 0 '


Imagine the first bit is 'subtract the value of that digit', so $1111=(7)-(8), 1010=(2)-(8)$

## Twos-complement: Benefits

Only 1 representation of 0
Most-significant bit is still the sign
Negate a value
Bitwise complement + 1
$0101=1010+1=1011$
Adding becomes easy again:

```
(4-3 = 4 + -3 = 1)
0100 + 1101 = 0001
```



## Twos-complement and unsigned ints



Get the two-complement number by subtracting $2^{w}$ from the unsigned number of the same representation:

Use the same algorithm for addition, so hardware implementation is simpler.

## What happens if you 'overflow'

Overflow: have numbers too big or small for your number of digits.

| 0110 | 1111 |
| :--- | :--- |
| +0100 | +0010 |
| -------- | $0001(1!)$ |

(Remember, using 4 bits, unsigned $=[0,15]$ and 1010 (-6!) 0001 (1!) signed [-8,7]

| $6+4=$ ? (signed) | $15+2=$ ? (unsigned) |
| :--- | :--- |
| $-6-6=?$ (signed) | $12-14=$ ? (unsigned) |
| Notes: You may get a warning for overflow with |  |
| two-complement numbers, but probably not with |  |
| unsigned numbers. |  |

## C: 'int' and 'unsigned'

int tx, ty;
unsigned ux, uy;

Explicit casting between signed \& unsigned:
tx $=$ (int) ux;
$u y=(u n s i g n e d) t y ;$

Implicit casting also occurs via assignments and function calls:
tx $=\mathbf{u x}$;
$u y=t y ;$

The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!

Casting - doesn't change underlying bits, they just get interpreted differently! This is NOT taking the absolute value.

Note: C doesn't dictate the integer representation method, the compiler does. Casting an integer to unsigned will result in different values depending on that choice.

Note: in C, constants are assumed to be signed, unless the ' $U$ ' suffix is used: 15 U -> 15 unsigned

## Float Point Numbers

- Fractional binary numbers work in the same fashion as fractional decimal numbers
- $1.25=1 \cdot 10^{0}+2 \cdot 10^{-1}+5 \cdot 10^{-2}$
- 0 b1.01 $=1 \cdot 2^{0}+0 \cdot 2^{-1}+1 \cdot 2^{-2}=1+1 / 4=1.25$
- can have repeating just like decimal
- $1 / 10=0 b 0.0001100110011[0011] \ldots$
- floating point values only represent numbers that can be written $x \cdot 2^{y}$
- like scientific notation
- not 0b0.000101 but $1.01 \cdot 2^{4}$
- Floating point standard established
- 1985, IEEE 754 - before that every system had a different approach


## Floating Point Numbers

- Numerical form: V10 =(-1)s * M * 2E
- Sign bit $\mathbf{s}$ determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two
s E: encodes exponent M: encodes fraction


## Floating Point Numbers

- Numerical form: V10 = (-1)s * M * $\mathbf{2 E}$
s E: encodes exponent M: encodes fraction
- For single precision ( 32 bits), we have $s=1$ bit, $E=8$ bits, $M=23$ bits
- For double precision ( 64 bits), we have $s=1$ bit, $E=11$ bits, $M=52$ bits
- Since we have a finite number of bits, some values will have to be approximated
- Special values
- zero: $s==0, E==0, M=0$
- $+\infty,-\infty$ : $\mathrm{E}==$ all ones, $\mathrm{M}==0$
- NaN (not a number): $\mathrm{E}=$ all ones, M != 0
- special values can pollute numerical computation


## Floating Point Numbers

- As with integers, floats suffer from the fixed number of bits available to represent them
- Can get overflow/underflow, just like ints
- Some "simple fractions" have no exact representation (e.g., 0.2)
- Can also lose precision, unlike ints "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
- Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!


## Floating Points in C

- C offers two levels of precision
- float single precision (32-bit)

You'll need to link that at compile time:
> gcc -lm myprogram.c

- \#include <math. $\mathrm{h}>$ to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky
- often return unexpected results
- Just avoid them!


## Data type conversions

- Implicit conversion for math operations $\Rightarrow$
- Conversions between data types:
- Casting between int, float, and double changes the bit representation
- int $\rightarrow$ float
- May be rounded: overflow not possible
- int $\rightarrow$ double or float $\rightarrow$ double
- Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- long int $\rightarrow$ double
- Rounded or exact, depending on word size
- double or float $\rightarrow$ int
- Truncates fractional part (rounded toward zero)
- E.g. 1.999 -> 1, -1.99 -> -1

- "Not defined" when out of range or NaN: generally sets to 1 $_{\text {ImוII }}$


## What about Hexadecimal?

| Generally use base 10 | Digital systems - base 2 | Base 16 - very compact |
| :--- | :--- | :--- |
| (10 fingers) | (binary) | (hexadecimal) |
| 234 | $234=0 b 11101010$ | $234=0 \times E A$ |
| $2 \times 100+3 \times 10+4 \times 1$ | $1 \times 2^{7}+1 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4}+$ | $14 \times 16^{1}+10 \times 16^{0}$ |
| $2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}$ | $1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$ | Need 16 digits, |
|  |  | so we used [0-9A-F] |

Computers represent things in binary. However, we can capitalize on different representations for compact storage, or for particular needs. One hexadecimal digit takes precisely 4 bits (one nibble) to store. Because 16 corresponds to 2 bytes conversion from binary to hexadecimal is convenient. Simultaneously, hex can be easier for humans to read and understand.

## Hexadecimal in C

There is no unique type for hexadecimal in C. We use 'unsigned int' or 'unsigned char'.
Remember, sizeof(int) $=2$ or 4 [bytes]
and sizeof(char) $=1$ [byte] ( 2 hex digits)
An unsigned char can hold values up to 255 or 0xFF (maximum two digit hex value)

```
unsigned char ahexvalue = 0xFE;
uintptr_t mymem = (uintptr_t) malloc (16);
for (int i = 0; i < 16; i++) {
    *((unsigned char*) (mymem+i)) = OxFE;
```

\}

## What about uintptr_t?

We use 'uintptr_t' as a type to hold a memory address:
uintptr_t: Integer type capable of holding a value converted from a void pointer and then be converted back to that type with a value that compares equal to the original pointer.

- Long integer / changes if you move to a different memory model so it is more portable to use these types

