
CSE 374 Lecture 7
Regex and Sed

Regular expressions and Grep
Can you write a regular expression to identify every
phone number?

\ : escape following character
.̒̓ : matches any single character at least once
p1|p2 : matches p1 OR p2
ʻ*ʼ : matches zero or more of the previous p
ʻ?ʼ : matches zero or one of the previous p (𝜺|p)
ʻ+ʼ : matches one or more of previous p (pp*)
() : group patterns for order of operations
{} : repeat n times
[] : contain literals to be matched (single or
range)
^ : Anchors to beginning of line
$: anchors to end of line
<> : word boundaries

D., Mark (206) 901-2345
E., Clarence +1-206-789-0123
E., Philip 1-206-890-1234
G., Timnit (206) 4569012
H., Grace +1 206.345.6789
H., Margaret (206)567-8901
J., Katherine 206 456 7890
L., Ada (206) 123-4567
L.,Jerry 2061235678
O., Ellen 206 2346789
T., Alan 206-234-5678
W., Jeannette 206 678.9012

What is ‘sed’?

Stream editor: makes basic text
transformations on an input stream

Use ʻsed command file[s]ʼ

Changes line by line, one pass through
Run ʻman sedʼ now!

Basic usage: sed
$ sed [OPTIONS] [COMMAND] [FILE]

$ input_stream | sed [COMMAND]

$ sed -i 's/original/replacement/g' test.txt

Useful options:

-i : replace input file with edited version

-e : allows for multiple commands -
applies each left to right (sed -e
's/a/A/' -e 's/b/B/' <old >new)

-f : reads command from a file

-n : suppresses output except when told
otherwise

Omitting file applies [COMMAND] to
stdin

ʻIʼ - Replaces input
file with updated
version

COMMAND

ʻsʼ - substitute

Input file

ʻGʼ - global

Sed cycle
1. Read one line from input stream
2. Put in pattern space without trailing /n
3. Execute command

a. commands with address are only executed if address is verified
4. Pattern space is printed to the output stream

Addresses
Addresses apply sed only to specific lines. Address comes before command.

Number : only that line number

$: last line of input

First~step : every ʻstepʼ lines starting with ʻfirstʼ

/regexp/ : only lines matching the regular expression

l1,l2: range - between line that matches l1, and line that matches l2 (l1&l2 can be numbers or
regex)

Other types of commands
ʻPʼ : print this line (often used with ʻ-nʼ to
suppress printing of non-marked lines)

ʻdʼ : delete this pattern space and continue

ʻyʼ : transliterate characters

ʻaʼ: append text

ʻiʼ : insert text

ʻcʼ : replace text

sed -n 's/pattern/&/p' <file

$ echo hello world | sed
'y/abcdefghij/0123456789/'
74llo worl3$

$ seq 3 | sed '2i hello'
1
hello
2
3

$ seq 10 | sed '2,9c hello'
1
hello
10

sed - more ideas
➢ Sed encounters one line at a time, and does one pass of the input.
➢ Delimiter ʻ/ʼ can be changed to anything, like ʻ_ʼ or ʻ:ʼ - may help if COMMAND contains

many ʻ/ʼ
➢ Multi-line editing is possible, but painful, with sed (with ʻhold bufferʼ). Use another

scripting program (like ʻawkʼ).
➢ Branches are also possibly (ʻbʼ and ʻtʼ commands)
➢ Use backreferences (\1, \2 etc) to refer back to regex gathered with \(to \)

What about
‘awk’

Or perl? Or ed? Or ruby?

Special purpose language for text
editing on an input stream. More
programming concepts, used for
bigger commands.

Many scripting choices, often with
more functionality. Sed stands as the
quickest, easiest, and standard on *nix
systems for simple commands.

Up next
Introduction to C

