
1

CSE401: Backend (A)

David Notkin

Autumn 2000

Reminder:
• Nothing covered in lecture or readings from

today on will appear on the midterm
• That is, the midterm will cover only front-

end issues

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

2

Now

! …what to do now that we have this wonderful
AST+ST representation

! We’ll look mostly at interpreting it or compiling it
• But you could also analyze it for program properties

• Or you could “unparse” it to display aspects of the program
on the screen for users

• …

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

3

Analysis

! What kinds of analyses could we perform on the
AST+ST representation?
• The representation is of a complete and legal program in the

source language

! Ex: ensure that all variables are initialized before they
are used
• Some languages define this as part of their semantic checks,

but many do not

! What are some other example analyses?

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

4

Implementing a language

! If we want to execute the program from this
representation, we have two basic choices
• Interpret it

• Compile it (and then run it)

! Tradeoffs between this include
• Time until the program can be executed (turnaround time)

• Speed of executing the program

• Simplicity of the implementation

• Flexibility of the implementation

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

5

Interpreters

! Essentially, an interpreter defines an EVAL loop that
executes AST nodes

! To do this, we create data structures to represent the
run-time program state
• Values manipulated by the program

• An activation record for each called procedure
– Environment to store local variable bindings

– Pointer to calling activation record (dynamic link)

– Pointer to lexically-enclosing activation record (static link)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

6

Pros and cons of interpretation

! Pros
• Simple conceptually, easy to implement
• Fast turnaround time
• Good programming environments
• Easy to support fancy language features

! Con: slow to execute
• Data structure for value vs. direct value
• Variable lookup vs. registers or direct access
• EVAL overhead vs. direct machine instructions
• No optimizations across AST nodes



2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

7

Compilation

! Divide the interpreter’s work into two parts
• Compile-time

• Run-time

! Compile-time does preprocessing
• Perform some computations at compile-time only once

• Produce an equivalent program that gets run many times

! Only advantage over interpreters: faster running
programs

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

8

Compile-time processing

! Decide on representation and placement of run-time
values
• Registers
• Format of stack frames
• Global memory
• Format of in-memory data structures (e.g., records, arrays)

! Generate machine code to do basic operations
• Like interpreting, but instead generate code to be executed

later

! Do optimization across instructions if desired

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

9

Compile-time vs. run-time

Dynamic linkCalling procedure

Static linkLexically-enclosed scope

Memory location, registerVariable

Environment
(content of stack frame)

Scope, symbol table

Activation record/
stack frame

Procedure

Run-timeCompile-time

Details
are
coming

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

10

An interpreter for PL/0
! Data structure to represent run-

time values: Value hierarchy
• Also useful for

resolve_constant

• Value-level analogue of Type

! Data structure to store Values
for each variable
• ActivationRecord that

contains
ActivationRecordEntries

• Run-time analogue of
SymbolTableScope

! eval method per AST class

class Value {
public:
…
virtual int intValue(){
…}

virtual bool boolValue(){
…}

…};

class IntegerValue : public
Value {
public:

…
bool isInteger()
{ return true; }

int intValue()
{ return _value; }

void print()
{ printf("%d", _value); }

…};

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

11

Example eval

Value* UnOp::eval(SymTabScope* s,
ActivationRecord* ar) {

Value* arg = _expr->eval(s, ar);

switch(_op) {
case MINUS:
return new IntegerValue(- arg->intValue());

case ODD:
return new BooleanValue(arg->intValue()

% 2 == 1);
default:

Plzero->fatal("unexpected UNOP");
}

}

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

12

Activation records

! Each call of a procedure allocated an activation
record (instance of ActivationRecord)
• Basically, equivalent to a stack frame and everything

associated with it

! An activation record primarily stores
• Mapping from names to Values for each formal and local

variable in that scope (environment)
– Don’t store values of constants, since they are in the symbol table

• Lexically enclosing activation record (static link)
– Why needed? To find values of non-local variables



3

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

13

Calling procedure

! There must be a logical link from the activation of the
calling procedure to the called procedure
• Why? So we can handle returns

! In PL/0, this link is implicit in the call structure of the
PL/0 eval functions
• So, when the source program returns from a procedure, the

associated PL/0 eval function terminates and returns to the
caller

! Some interpreters represent this link explicitly
• And we will definitely do this in the compiler itself

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

14

Activation records & symbol tables

! For each procedure in a program
• Exactly one symbol table, storing types of names
• Possibly many activation records, one per call, each storing

values of names

! For recursive procedures there can be several
activation records for the same procedure on the stack
simultaneously

! All activation records for a procedure have the same
shape, which is described by the single, shared symbol
table

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

15

module M;
var res: int;
procedure

fact(n:int);
begin

if n > 0 then
res := res * n;
fact(n-1);

end;
end fact;

begin
res := 1;
fact(input);
output := res;

end M.

• I’ll need some
volunteers

• Symbol tables for M
and fact

• Activation records
in executing fact(4)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•B
ac

ke
nd

A
•S

lid
e

16

This stuff is important!

! So we’ll repeat in here (interpreting)

! And again in compiling


