
1

CSE401: Storage Layout (A)

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

2

Run-time storage layout:
focus on compilation, not interpretation

! Play how and where to keep data at run-time
! Representation of

• int, bool, etc.
• arrays, records, etc.
• procedures

! Placement of
• global variables
• local variables
• parameters
• results

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

3

Data layout of scalars
Based on machine representation

Use hardware representation

(2, 4, or 8 bytes, maybe two words if
segmented machine)

Pointer

1-2 bytes or wordChar

1 byte or wordBool

Use hardware representation

(2, 4, and/or 8 bytes of memory, maybe
aligned)

Integer

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

4

Data layout of aggregates

! Aggregate scalars together
! Different compilers make different decisions
! The decisions are sometimes machine

dependent
• Note that through the discussion of the front-end,

we essentially never mentioned the target machine
• We didn’t in interpretation, either
• But now it’s going to start to come up constantly

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

5

Layout of records

! Concatenate layout of
fields
• Respect alignment

restrictions

• Respect field order, if
required by language

– Why might a language
choose to do this or not do
this?

r : record
b : bool;
i : int;
m : record

b : bool;
c : char;

end
j : int;

end;

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

6

Layout of arrays

! Repeated layout of
element type
• Respect alignment of

element type

! How is the length of the
array handled?

s : array [5] of
record;

i : int;
c : char;

end;

2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

7

Layout of multi-dimensional arrays

! Recursively apply layout
rule to subarray first

! This leads to row-major
layout

! Alternative: column-
major layout
• Most famous example:

FORTRAN

a : array [3] of
s : array [5] of

record;
i : int;
c : char;

end;

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

8

Dynamically sized arrays

! Arrays whose length is
determined at run-time
• Different values of the same

array type can have different
lengths

! Can store length implicitly
in array
• Where? How much space?

! Dynamically sized arrays
require pointer indirection
• Each variable must have fixed,

statically known size

a : array of

record;
i : int;
c : char;

end;

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

9

Dope vectors

! PL/0 handled arrays differently, in particular
storage of the length

! It used something called a dope vector, which
was a record consisting of
• A pointer to the array
• The length of the array

! Arrays could change locations in memory and
size quite easily

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

10

String representation

! A string is an array of characters
• So, can use array layout rule for strings

! Pascal: strings have statically determined length
• Layout like array with statically determined length

! Other languages: strings have dynamically determined
length
• Layout like array with dynamically determined length
• Alternative: use special end-of-string character (e.g., \0)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

11

Storage allocation strategies

! Given layout of data structure, where in memory to
allocate space for each variable/data structure?

! Key issue: what is the lifetime (dynamic extent) of a
variable/data structure?
• Whole execution of program (e.g., global variables)

⇒Static allocation

• Execution of a procedure activation (e.g., locals)
⇒Stack allocation

• Variable (dynamically allocated data)
⇒Heap allocation

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

12

Parts of run-time memory

! Code/Read-only data area
• Shared across processes running same

program

! Static data area
• Can start out initialized or zeroed

! Heap
• Can expand upwards through (e.g.

sbrk) system call

! Stack
• Expands/contracts downwards

automatically
code/RO data

static data

heap

stack

3

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

13

Static allocation

! Statically allocate variables/data structures with global
lifetime
• Global variables

• Compile-time constant strings, arrays, etc.

• static local variables in C, all locals in FORTRAN

• Machine code

! Compiler uses symbolic addresses

! Linker assigns exact address, patches compiled code

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

14

Stack allocation

! Stack-allocate variables/data structures with LIFO
lifetime
• Data doesn’t outlive previously allocated data on the same

stack

! Procedure activation records allocated on a stack
• A stack-allocated activation record called a stack frame
• Frame includes formals, locals, static link of procedure
• Dynamic link points to stack frame above

! Fast to allocate and deallocate storage
! Good memory locality

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

15

Constraints on stack allocation

! Stack allocation
required no
references to
stack-allocated
data after
returns

! This is violated
by general first-
class functions

proc foo(x:int) : proctype (int) : int;
proc bar(y:int):int;
begin

return x + y;
end bar;

begin
return bar;

end foo;

var f:proctype(int):int;
var g:proctype(int):int;

f := foo(3); g := foo(4);
output := f(5); output := g(6);

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

16

Constraints on stack allocation

! Also violated if
pointers to locals are
allowed

proc foo (x:int): *int;
var y:int;

begin
y := x * 2;
return &y;

end foo;

var w,z:*int;

z := foo(3);
w := foo(4);

output := *z;
output := *w;

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

17

Heap allocation

! For data with unknown lifetime
• new/malloc to allocate space
• delete/free/garbage collection to deallocate space

! Heap-allocate activation records of first-class
functions

! Relatively expensive to manage
! Can have dangling reference, storage leaks

• Garbage collection reduces (but may not eliminate) these
classes of errors

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

18

Stack frame layout

! Need space for
• Formals
• Locals
• Dynamic link
• Static link
• Other run-time data (e.g., return address, saved registers)

! Assign dedicated registers to support access to stack
frames
• Frame pointer (FP): ptr to beginning of stack frame (fixed)
• Stack pointer (SP): ptr to end of stack (can move)

4

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

19

Key property

! All data in stack frame is at a fixed, statically
computed offset from the FP

! This makes it easy to generate fast code to
access the data in the stack frame
• And even lexically enclosing stack frames

! Can compute these offsets solely from the
symbol tables
• Based also on the chosen layout approach

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•L
ay

ou
t

A
•S

lid
e

20

...caller's frame...

formal N

formal N-1

...

formal 1

static link

return address

dynamic link

saved registers

local N

local N-1

...

local 1

arg N

arg N-1

...

arg 1

callee's static link

FP

SP

stack
grows
down

high
addresses

low
addresses

