
1

CSE401: Midterm review

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

2

Scope

! Everything we covered on overview topics and
(especially) on the front-end issues in a
compiler

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

3

Overview

! Why we study compilers

! What a compiler is, what an interpreter is

! The structure of compilation (front-end, back-
end, lexer, parser, etc.)

! Engineering issues in compilation

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

4

Lexing

! Overall approach
• Define regular expressions for tokens
• Convert regular expressions to NFAs
• Convert NFAs to DFAs

– Subset construction

• Convert DFAs to efficient implementation
– Two approaches

! You should be able to actually do each and every one
of these steps

! Language design issues (whitespace, indenting, etc.)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

5

Formal languages

! Alphabets, grammars, languages, productions,
etc.

! Relationship of languages to automaton
• You should understand this clearly for lexing and

parsing, but for the higher levels in the hierarchy,
you don’t need to know the nitty-gritty details

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

6

Parsing

! The AST: what and why
• Primary and central hierarchical representation of the

program

! CFGs
• Why they are different from regular expressions

• Why this is necessary for parsing

• Notation and terminology
– Derivations, parsing, etc.

• Ambiguity and ways to overcome it



2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

7

Parsing

! Algorithms
• Top-down vs. bottom-up

• You need to know all details of top-down parsing
– FIRST/FOLLOW and predictive parsing, etc.

– Eliminating common prefixes, ambiguity, etc.

– Recursive descent parsers

• You need to know the basics of bottom-up

• Know the notation: LL(k), LR(k), etc.

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

8

Semantic analysis

! Perform final legality checking of program

! Perform enough analysis to enable back-end

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

9

Symbol tables

! What they are

! What goes in them

! Why they are needed

! How to implement them

! How to structure them for block-structured
languages

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

10

Static vs. dynamic scoping

! Why this matters to symbol tables

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
id

te
rm

re
vi

ew
•S

lid
e

11

Types

! What are they
! A taxonomy of types
! How we represent them

• Including records, arrays, procedures, etc.

! Type checking terminology
• strong vs. weak
• static vs. dynamic
• structural vs. name equivalence
• overloading vs. polymorphism

! Type checking strategy
! Type conversion and coercion, casting


