
1

CSE401: Target Code Generation
and Midterm

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
2

Codegen example

void IfStmt::
codegen(SymTabScope* s, RegisterBank* rb) {

Reg test = _test->codegen(s, rb);

char* elseLabel = TheAssembler->newLabel();
TheAssembler->branchFalse(test, elseLabel);
rb->freeReg(test);

for (int i = 0; i < _then_stmts->length(); i++) {
_then_stmts->fetch(i)->codegen(s, rb);

}

TheAssembler->insertLabel(elseLabel);
}

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
3

void CallStmt::
codegen(SymTabScope* s, RegisterBank* rb) {

for (int i = _args->length() - 1; i >= 0; i--) {
Expr* arg = _args->fetch(i);
Reg areg = arg->codegen(s, rb);
TheAssembler->push(areg);rb->freeReg(areg);

}
SymTabScope* enclScope;
SymTabEntry* ste = s->lookup(_ident, enclScope);
…

Reg staticLink = s->getFPOf(enclScope, rb);
TheAssembler->push(staticLink);
rb->freeReg(staticLink);
rb->saveRegs(s);
TheAssembler->call(_ident);
rb->restoreRegs(s);
TheAssembler->popMultiple((_args->length() + 1) *

TheAssembler->wordSize());
}

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
4

Another example

void AssignStmt::
codegen(SymTabScope* s, RegisterBank* rb) {

int offset;
Reg base = _lvalue->codegen_address(s, rb, offset);

Reg result = _expr->codegen(s, rb);

TheAssembler->store(result, base, offset);

rb->freeReg(base);
rb->freeReg(result);

}

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
5

Next lecture

! Run-time system calls

! Beginning of optimization
• There is none in PL/0 (either basic or extended)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
6

Part I

! If G is an ambiguous context-free grammar, then there is at
least one sentence in the language defined by G that has two
possible parse trees.

! It is possible to define a lexer in terms of a context-free
grammar.

! Semantic type-checking is necessary for ensuring that a break
statement in enclosed within a loop statement.

! A handle in bottom-up parsing corresponds to the intersection
of the FIRST and FOLLOW sets for a non-terminal in a
grammar.

! Strong typing would preclude a program from adding two
integers and storing them in a pointer to an integer.



2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
7

Part IIa

! Describe a language that can be recognized by a context-free
grammar but not a deterministic finite-state machine.

! Lisp is a ____________ and ______________ typed language.

! To programming recursively in a language that does not
explicitly support recursion, you have to implement your own
______________.

! In a language like PL/0, constant values are usually stored in
the ______________.

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
8

Part IIb

! If you have two grammars for the same language, where one
grammar is LL(1) and the other is LR(1), would you expect
the semantic checking for these grammars to be substantially
the same or significantly different? Briefly justify your answer.

! Give an example of a legality check on input programs that
could be made using a context-free grammar but that is
generally more practical to check during semantic analysis.

! Concisely distinguish between overloading and polymorphism.

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
9

Part IIc

! Which is more expensive to apply, structural
equivalence or name equivalence of types? In one
sentence, justify your answer.

! Concisely address the following statement: “If you
have an ambiguous context-free grammar, then a
rightmost derivation will always differ from a leftmost
derivation.”

! We prefer for our internal representations to capture
abstract syntax. Briefly: why, then, do we have
concrete syntax?

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
10

Part III

! The C programming language has a large number of operators (for defining
expressions) with 16 levels of precedence. The first five levels of the
precedence structure are:

• Parentheses
• Structure access . ->

• Unary ! - ++ -- * &
• Multiply, divide, mod * / %
• Add, subtract + -

! Furthermore, all the binary operators associate left-to-right, while the unary
operators (including structure access) associate right-to-left (this isn’t
exactly the way that C does associativity, but use it for this problem). Write
a context-free grammar that defines expressions using these operators with
this precedence and associativity structure.

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
11

Part IV

! Compute the FIRST and FOLLOW sets for the
following grammar:

G ::= ABCabcd
A ::= a | ε
B ::= b | ε
C ::= c | ε

! State the precise relationship between FIRST and
FOLLOW sets and predictive parsing.

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
12

Part Va

! Briefly explain the role, if any, that a symbol table
must play in supporting dynamic scoping.

! Assume you are compiling a language that supports
concurrency (i.e., multiple threads of control).
Concisely discuss the following statement: “Because
there are multiple threads of control, the stack-
discipline used in managing the symbol table during
compilation (for languages like PL/0) must be
completely redesigned.”



3

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•C
od

e
G

en
er

at
io

n
C

•S
lid

e
13

Part Vb
Some languages, such as Pascal, have a with statement such as:

var new_patient: Patient;
old_patient: Patient; …

with new_patient: new, old_patient: old do begin

new.LastName := 'Smith';

new.FirstName := 'Abby';

new.Sex := Female;
old.LastName := 'Brown';

old.FirstName := 'Henry';

old.Sex := Male

end;

Basically, with allows you to use a different (usually shorter) name for record instances.
For example, inside the with clause you can write new.FirstName to refer to the
FirstName field of record new_patient, because of the binding in the with clause. What
changes, if any, are needed to a PL/0-ish compiler to accommodate a with statement.


