
1

CSE401: Optimization

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
2

Interprocedural optimizations

! What happens if we expand the scope of the optimizer
to include procedures calling each other
• In the broadest scope, this is optimization of the program as

a whole

! We can do local, intraprocedural optimizations at a
bigger scope
• For example, constant propagation

! But we can also do entirely new optimizations, such
as inlining

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
3

Inlining

! Replace procedure call with
the body of the called
procedure

const pi:real := 3.14159;
proc area(rad:int):int;
begin

return pi*(rad^2);
end;
…
r := 5;

…
output := area(r);

const pi:real := 3.14159;

proc area(rad:int):int;

begin

return pi*(rad^2);

end;

…

r := 5;

…

output := pi*(r^2);

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
4

Questions about inlining:
few answers

! How to decide where the payoff is sufficient to
inline?
• The real decision depends on dynamic information

about frequency of calls

! In most cases, inlining causes the code size to
increase; when is this acceptable?

! Others?

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
5

Optimization and debugging

! Debugging optimized code is often challenging

! Examples include
• What if statements are no longer ordered as they were in the

source code?

• What if variables in the source code are eliminated?

• What if code is inlined?

! In general, the more optimization there is, the more
complex the back-mapping is from the target code to
the source code … which can confuse a programmer

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
6

Summary of optimization

! Larger scope of analysis yields better results
• Most of today’s optimizing compilers work at the intraprocedural level,

with some doing some work at the interprocedural level

! Optimizations are usually organized as collections of passes

! The presence of optimizations may make other parts of the
compiler (e.g., the code generator) easier to write
• One example was to use a simple instruction selection algorithm,

knowing that the optimizer can, in essence, act to improve these
instruction selections



2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
7

Implementing intraprocedural
optimizations

! The heart of implementing optimizations is the
definition and construction of a convenient
representation

! We’ll look a bit more closely at two common
and useful representations, which I’ve
mentioned before
• The control flow graph (CFG)
• The data flow graph (DFG)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
8

CFG

! Nodes are intermediate language statements
• Or whole basic blocks

! Edges represent control flow
! Node with multiple successors is a

branch/switch
! Node with multiple predecessors is a merge
! Loop in a graph represents a loop in the

program

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
9

Example

while x > y do
x : = x + 1;

end;

if x > 0 then
output := x;

end;

x > y

x := x+1

Yes No

x > 0

output := x

Yes No

y := input

x := input

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
10

DFG: def/use chains

! Nodes are def(initions) and uses

! Edge from def to use

! A def can reach multiple uses

! A use can have multiple reaching defs

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
11

Example

x := input;
y := input;

while x > y do
x : = x + 1;

end;

if x > 0 then
output := x;

end;

y := inputx := input

x > y

x := x + 1x > 0

output := x

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
12

Example program
CFG and DFG in groups

x := 3;

y := x * x;

if y > 10 then

x := 5;

y := y + 1;

else

x := 6;

y := x + 4;

end;

w := y / 3;
while y > 0 do

z := w * w;
x := x – z;
y := y – 1;

end;

output := x;



3

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•O
pt

im
iz

at
io

n
C

•S
lid

e
13

Analysis and transformation

! Each optimization is one or more analyses followed by a
transformation

! Analyze CFG and/or DFG by propagating information forward
or backward along CFG and/or DFG edges
• Merges in graph require combining information
• Loops in graph require iterative approximation

! Perform improving transformations based on information
computed
• Have to wait until any iterative approximation has converged

! Analysis must be conservative, so that transformations preserve
program behavior


