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CSE401: Analysis

David Notkin

Autumn 2000
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Analysis and transformation

! Each optimization is one or more analyses followed by a
transformation

! Analyze CFG and/or DFG by propagating information forward
or backward along CFG and/or DFG edges
• Merges in graph require combining information
• Loops in graph require iterative approximation

! Perform improving transformations based on information
computed
• Have to wait until any iterative approximation has converged

! Analysis must be conservative, so that transformations preserve
program behavior
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A simple analysis

! Let’s start with a simple
analysis that can help us
determine which
assignments can be
eliminated from a basic
block

! The example is
unreasonable as source,
but perhaps not as
intermediate code

proc foo(j, k, l:int):int
begin

int a, b, c, n, x;
a := 17 * j;
b := k * k;
c := a + b;
a := k * 7;
return c;

end
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Liveness analysis

! This analysis is a form of liveness analysis
• It can help identify assignments to remove
• It can also form the basis for memory and register optimizations

! The goal is to identify which variables are live and which are
dead at given program points

! The analysis is usually performed backwards
• When a variable is used, it becomes lives in that statement and code

before it
• When a variable is assigned to, it becomes dead for all code before it

! Note the relationship to def-use, as we saw in the data flow
graph
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Work backwards

Live Dead

proc foo(j, k, l:int):int
begin

int a, b, c, n, x;
a := 17 * j; ? ?
b := k * k; ? ?
c := a + b; {k,l,a,b,c} {j,n,x}
a := k * 7; {k,l,c} {j,n,x,a,b}
return c; {c} {j,k,l,n,

end x,a,b}
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So?

! This analysis shows we can eliminate the last
assignment to a, which is no surprise

! Technically, assignments to a dead variable can be
removed
• The value isn’t needed below, so why do the assignment?

! Furthermore, you could show for this example that the
declarations for n and x aren’t needed, since n nor x
is ever live
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Then…

! After eliminating the last assignment (and these
two declarations), you can redo the analysis

! This analysis now shows that l is dead
everywhere in the block, and it can be removed
as a parameter

! The stack can be reduced because of this
! And the caller could, in principle, be further

optimized
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Well, that was easy

! But that’s for basic blocks
! Once we have control flow, it’s much harder to

do because we don’t know the order in which
the basic blocks will execute

! We need to ensure (for optimization) that every
possible path is accounted for, since we must
make conservative assumptions to guarantee
that the optimized code always works
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Global data flow analysis

! We’re going to need something called global data flow analysis

! The form we’re interested in for live variable analysis (across
basic blocks) is any-path analysis
• An any-path property is true is there exists some path through the

control flow graph such that the given property holds
– For example, a variable is live if there is some path leading to it being

accessed

– For example, a variable is uninitialized if there is some path that does not
initialize it

! All-path is the other major form of analysis
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Example (Dragon, p. 609)

! Let’s now consider this
analysis over a control flow
graph
• Basic blocks connected by

edges showing possible
control flow

• We will omit the conditionals
and labels on edges, since
that’s fine for any-path
analysis

• This is extremely conservative
(safe)

d1: i := m-1
d2: j := n
d3: a := u1

d4: i := i+1

d5: j := j+1

d6: a := u2

B1

B2

B3

B4

B6B5
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Some more terminology

! A definition of a variable x is a statement that assigns a value
to x

• (The book discussed unambiguous vs. ambiguous
definitions, but we’ll ignore this)

! A definition d reaches a program point p if
• There is a path from the point immediately following d to p

• And d is not killed along that path

! We’re now really giving formal definitions to these
terms, but we’ve used them before
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Examples

! d1, d2,d5 reach the beginning of B2

! d2 does not reach B4, B5, or B6

! Note: this is a conservative analysis, since it
may determine that a definition reaches a point
even if it might not in practice
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But how to compute in general?

! We’d like to be able to compute all reaching
definitions (for example)

! Let’s consider a simple language
• It turns out to be very material

• Complex languages impose really serious demands
on data flow analysis

! S ::= id := E | S ; S | if E then S else S | do S while E
E ::= id + id | id
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Data flow equations

! We’re now going to define a set of equations
that represent the flow through different
constructs in the language

! For example
• out[S] = gen[S] ∪ (in[S] – kill[S])
• “The information at the end of S is either generated

within the statement (gen(S)) or enters at the
beginning of the statement (in(S)) and is not killed
by the statement (-kill(S))”
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Example: d: a := b+c

! gen[S] = {d}
! kill[S] = Da – {d}

! out[S] = gen[S] ∪ (in[S] – kill[S])

! Da is the set of all definitions in the program for
variable a
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Example: S1 ; S2

! gen[S] = gen[S2] ∪ (gen[S1] – kill[S2])
! kill[S] = kill[S2] ∪ (kill[S1] – gen[S2])
! in[S1] = in[S]
! in[S2] = out[S1]
! out[S] = out[S2]
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Example: if E then S1 else S2 fi

! gen[S] = gen[S1] ∪ gen[S2]
! kill[S] = kill[S1] ∩ kill[S2]
! in[S1] = in[S]
! in[S2] = in[S]
! out[S] = out[S1] ∪ out[S2]
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Example: while E do S1

! gen[S] = gen[S1]
! kill[S] = kill[S1]

! in[S1] = in[S] ∪ gen[S1]
! out[S] = out[S1]
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Then what?

! In essence, this defines a set of rules by which we can
write down the relationships for gen/kill and in/out for
a whole (structured) program

! This defines a set of equations that then need to be
solved

! This solution can be complicated
• We don’t know if/when branches are taken
• Loops introduce complications
• Merges introduce complications

! Approaches to solutions: next lecture


