
1

CSE401: Analysis

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
2

Let’s make data flow concrete:
example from Appel’s book

! A variable is live if its
current value will be used
• Variable b is used in 4, so it is

live on the (3,4) edge
• Since 3 doesn’t assign into b,
b is also live on (2,3)

• Statement 2 assigns to b, so
the contents of b on the (1,2)
edge aren’t needed by anyone:
b is dead on that edge

• So variable b is live on (2,3)
and (3,4), but nowhere else

a := 0

b := a+1

c := c+b

a := b*2

a < n

return c

1

2

3

4

5

6

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
3

a’s liveness?

! Live on (1,2) and also on
(4,5) and (5,2)

! But it’s not live on (2,3) and
(3,4), even though it has a
defined value
• It’s not used before a new

assignment to a is made

! (Since a and b are never live
on the same edges, they
could share a register)

a := 0

b := a+1

c := c+b

a := b*2

a < N

return c

1

2

3

4

5

6

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
4

def-use

{a} N5

{c}6

{b}{a}4

{b,c}{c}3

{a}{b}2

{a}1

usedefNode #

Treat as
constant

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
5

Liveness defined by def-use

! A variable is live on an edge if there is a directed path from
the edge to a use of the variable that does not go through any
def

• That is, it isn’t killed by another def

1) If a statement uses a variable, the variable is live on entry to
that node

2) If a variable is live on entry to a node, then it is live on exit
from all predecessor nodes

3) If a variable is live on exit from a node and is not defined by
the node, then it is live on entry to the node

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
6

In equation form

! in[n] = use[n] ∪ (out[n] – def[n])
• Variables live at node n are those used in n plus those that are live when

they leave n except those defined in n

! out[n] = ∪s∈succ[n] in[s]
• Find all nodes that are successors of n; any variable that leaves n live

enters those nodes live

! Our goal is to compute liveness --- in and out --- given def
and use

! Note that in is defined in terms of out, and out in terms of
in



2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
7

Algorithm:
solve these equations by iteration

for each n
in[n] := {}; out[n] := {};

repeat for each n
in’[n] := in[n]; out’[n] := out[n]
in[n] := use[n] ∪ (out[n]-def[n])
out[n] := ∪s∈succ[n] in[s]

until in’[n] = in[n] and out’[n] = out[n] for all n

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
8

rows: nodes • columns: iterations

cccccccc6

acacacacacacacacacacacaaaa5

acbcacbcacbcacbababbab4

bcbcbcbcbbccbcbbcbbcbccbc3

bcacbcacbcacbcacbcacbcaaba2

accaccaccacaaa1

outinoutinoutinoutinoutinoutinoutindefuse

#7#6#5#4#3#2#1

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•A
na

ly
si

s
B

•S
lid

e
9

Change order of iterations: from 6 to 1

caccaccacc1

acbcacbcacbca2

bcbcbcbcbcbcab3

bcacbcacbcaccbc4

acacacacaccba5

ccca6

outinoutinoutinoutinoutinoutinoutindefuse

#7#6#5#4#3#2#1

These iterations aren’t
needed: fixed point already
reached

Note: Node order (left column) reversed!
U

W
C

SE
40

1
A

Q
20

00
•D

.N
ot

ki
n

•A
ll

ri
gh

ts
re

se
rv

ed
•A

na
ly

si
s

B
•S

lid
e

10

Some observations

! The iteration order is key to performance
• For this data flow computation, since it is in some sense naturally “backwards”,

it tends to be more efficient iterating over the CFG in “reverse”
• A simple depth-first search can be used to find an effective ordering

! In practice, with efficient representations, the algorithm is usually O(N) or
O(N2) for a program of N nodes
• Bit vectors are commonly used to represent the sets of variables; good for dense

sets
• Sorted linked lists are also used; good for sparse sets

! It turns out that there are multiple solutions to the dataflow equations:
however, there is one least (minimal) solution

! Finally, remember this is conservative: it may show a variable is live when
it in fact never is


