CSE401: Analysis

David Notkin
Autumn 2000

Liveness defined by def-use

- A variable is live on an edge if there is a directed path from the edge to a use of the variable that does not go through any def
- That is, it isn't killed by another def

1) If a statement uses a variable, the variable is live on entry to that node
2) If a variable is live on entry to a node, then it is live on exit from all predecessor nodes
3) If a variable is live on exit from a node and is not defined by the node, then it is live on entry to the node

Let's make data flow concrete:
example from Appel's book

- A variable is live if its
current value will be used
- Variable b is used in 4 , so it is live on the $(3,4)$ edge
- Since 3 doesn't assign into b, b is also live on $(2,3)$
- Statement 2 assigns to b , so the contents of b on the $(1,2)$ dge aren t needed by anyone. b is dead on that edge
- So variable b is live on $(2,3)$ and $(3,4)$, but nowhere else

In equation form

- in [n] = use [n] \cup (out [n] - def [n])
- Variables live at node n are those used in n plus those that are live when they leave n except those defined in n
- out [n] $=\cup_{s \in \operatorname{succ}[n]}$ in [s]
- Find all nodes that are successors of n; any variable that leaves n live enters those nodes live
- Our goal is to compute liveness --- in and out --- given def and use
- Note that in is defined in terms of out, and out in terms of in

Algorithm:

solve these equations by iteration
for each n
in[n] := $\} ;$ out[n] := $\} ;$
repeat for each n in'[n] := in[n]; out'[n] := out[n] in $[n]:=$ use $[n] \cup($ out $[n]-\operatorname{def}[n])$ out $[n]:=\cup_{\text {s } \in \operatorname{succ}[n]} \mathrm{in}[\mathrm{s}]$
until in' $[n]=\operatorname{in}[n]$ and out'[n] = out $[n]$ for all n

Some observations

- The iteration order is key to performance
- For this data flow computation, since it is in some sense naturally "backwards", it tends to be more efficient iterating over the CFG in "reverse"
- A simple depth-first search can be used to find an effective ordering
- In practice, with efficient representations, the algorithm is usually $\mathrm{O}(\mathrm{N})$ or $\mathrm{O}\left(\mathrm{N}^{2}\right)$ for a program of N nodes
- Bit vectors are commonly used to represent the sets of variables; good for dense sets
- Sorted linked lists are also used; good for sparse sets
- It turns out that there are multiple solutions to the dataflow equations:
however, there is one least (minimal) solution
- Finally, remember this is conservative: it may show a variable is live when it in fact never is

