
1

CSE401: Miscellaneous

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
2

Software engineering tools

! A compiler is just one tool that helps in writing
software
• It is, indeed, absolutely necessary in practice

! There are lots of other tools, however, that can
help programmers write software

! And many of these are based on techniques
similar to or inspired by those found inside
compilers

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
3

Software tools?

! Editors
• Any compiler-like knowledge?

! Debuggers
• Any compiler-like knowledge?

! List some others?

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
4

Program slicing

! Mark Weiser developed an idea called program slicing

! The idea is that you could select a program point, and
a program slicer (a tool), would compute the subset of
the program needed to compute the values in use at
that point

! It originally conceived of as a support primarily for
debugging, since it would allow you to focus on
pertinent parts of the program and to ignore the others

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
5

Examples
from Reps/Horwitz

P := 3.14;
rad := 3;
if DEBUG then rad := 4 fi
area := P*(rad*rad)
circ := 2*P*rad
output(area);
output(circ);

P := 3.14;
rad := 3;
if DEBUG then rad := 4 fi
area := P*(rad*rad)
circ := 2*P*rad
output(area);
output(circ);

Backward slice Forward slice

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
6

Computing slices

! Weiser originally defined an approach to computing slices
based on iterative data flow
• Very similar to what we saw last week for determining the liveness of

variables

! This approach was later shown to be slightly flawed

! Ottenstein and Ottenstein then formulated slicing as a graph
traversal problem over program dependence graphs (PDGs)
• In essence, a PDG combines control and data flow information

• The control flow information is represented as control dependences
– A → B if executing A means that you’ll always execute B



2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
7

PDG example: on white board

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
8

Complications

! Slicing across procedures is more complicated
• If phrased as graph traversal over the “obvious” interprocedural PDG,

the slices get very, very big
• This is because a call enters a procedure’s PDG, but the return is

handled by traversing all possible callers

! PDGs for large programs are expensive to build, and take lots
of space — slicing can be very expensive

! In languages like C, macro preprocessing is a complete pain to
handle

! There isn’t much data, but there is little evidence that for large
program slices are small enough to give real benefits

! There are very few commercial slicers

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
9

Testing tools

! Software testing is difficult and costly
! One form of testing is white box testing

• The actual source code is available

! There are a number of coverage measures
• Did we execute all the statements?
• Did we execute all the control flow edges?
• Did we execute all the control flow paths?
• Did we exercise all def-use chains?

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
10

Program transformation

! Compilers translate from source to target code
! Some tools do a source-to-source translation
! One approach that uses this is for program

restructuring
! We are interested in restructuring, since program

structure tends to degrade over time
! But people don’t often restructure in practice

• Doesn’t make money now, introduces new bugs, decreases
understanding, political pressures, who wants to do it, hard
to predict lifetime costs & benefits

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
11

Griswold’s approach

! Griswold developed an approach to meaning-
preserving restructuring

! Make a local change
• The tool finds global, compensating changes that

ensure that the meaning of the program is preserved
– What does it mean for two programs to have the same

meaning?

• If it cannot find these, it aborts the local change

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
12

Simple example

! Swap order of formal
parameters

! It’s not a local change nor a
syntactic change

! It requires semantic
knowledge about the
programming language

! Griswold uses a variant of
the sequence-congruence
theorem [Yang] for
equivalence
• Based on PDGs

! It’s an O(1) tool



3

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
13

Limited power

! The actual tool and approach has limited power

! Indeed, too limited to be useful in practice
• PDGs are limiting

– Big and expensive to manipulate

– Difficult to handle in the face of multiple files, etc.

! May encourage systematic restructuring in
some cases

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
14

Reverse engineering

! Trying to find good designs in code whose structure has
degraded
• e.g., Rigi, various clustering algorithms (Rigi is used above)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
15

Clustering

! The basic idea is to take one or more source
models (e.g., dependence relations) of the code
and find appropriate clusters that might
indicate “good” modules

! Coupling and cohesion, of various definitions,
are at the heart of most clustering approaches

! Many different algorithms

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
16

Reverse engineering...

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
17

Rigi’s approach

! Extract dependence relations (they call them resource
relations)

! Build edge-weighted resource flow graphs
• Discrete sets on the edges, representing the resources that

flow from source to sink

! Compose these to represent subsystems
• Looking for strong cohesion, weak coupling

! The systems uses definitions of interconnection
strength and similarity measures (with tunable
thresholds)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
18

Math. concept analysis
! Define relationships between (for instance) functions and

global variables [Snelting et al.]

! Compute a concept lattice capturing the structure
• “Clean” lattices = nice structure

• “ugly” ones = bad structure



4

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
19

An aerodynamics program

! 106KLOC Fortran

! 20 years old

! 317 subroutines

! 492 global
variables

! 46 COMMON
blocks

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•M
is

ce
lla

ne
ou

s
A

•S
lid

e
20

Recap

! The point of today’s lecture is to show that
many compiler-like analyses and
representations can be used for other kinds of
software engineering tools
• Slicing, testing, reverse/re-engineering, etc.


