CSE401: Miscellaneous

David Notkin
Autumn 2000

UW CSE401 AQ 2000 + D. Notkin « All rights reserved « Miscellaneous A « Slide 2

Software engineering tools

= A compiler isjust one tool that helpsin writing
software
¢ Itis, indeed, absolutely necessary in practice

= There arelots of other tools, however, that can
help programmers write software

= And many of these are based on techniques
similar to or inspired by those found inside
compilers

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 3

Software tools?

= Editors

« Any compiler-like knowledge?
= Debuggers

« Any compiler-like knowledge?
= List some others?

UW CSE401 AQ 2000 « D. Notkin * All rights reserved « Miscellaneous A « Slide 4

Program dlicing

= Mark Weiser developed an idea called program slicing

= Theideaisthat you could select a program point, and
aprogram slicer (atool), would compute the subset of
the program needed to compute the values in use at
that point

= It originally concelved of asa support primarily for
debugging, since it would alow you to focus on
pertinent parts of the program and to ignore the others

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 5

from Reps/Horwitz

rad := 3; rad := 3;
if DEBUG then rad := 4 fi if DEBUG then rad :
area := P*(rad*rad) area := P*(rad*rad)
circ := 2*P*rad circ := 2*P*rad
output (area) ; output (area) ;
[output (cizo)] output (cixe)

Backward dice Forward dlice

UW CSE401 AQ 2000 « D. Notkin « All rights reserved » Miscellaneous A « Slide 6

Computing slices

= Weiser originally defined an approach to computing slices
based on iterative data flow
« Very similar to what we saw last week for determining the liveness of
variables
= Thisapproach was later shown to be slightly flawed
= Ottenstein and Ottenstein then formulated slicing as a graph
traversal problem over program dependence graphs (PDGs)
 Inessence, aPDG combines control and data flow information
« The control flow information is represented as control dependences
— A — Bif executing A meansthat you'll always execute B

UW CSE401 AQ 2000 « D. Notkin « All rights reserved » Miscellaneous A « Slide 7

PDG example: on white board

UW CSE401 AQ 2000 + D. Notkin « All rights reserved » Miscellaneous A « Slide 8

Complications

= Slicing across procedures is more complicated
« |f phrased as graph traversal over the “obvious’ interprocedural PDG,
the dlices get very, very big
« Thisisbecause acall enters aprocedure's PDG, but the return is
handled by traversing all possible callers
= PDGsfor large programs are expensive to build, and take lots
of space — dicing can be very expensive
= Inlanguages like C, macro preprocessing is a complete pain to
handle
= Thereisn’t much data, but thereislittle evidence that for large
program slices are small enough to give real benefits
= Thereare very few commercial sicers

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 9

Testing tools

= Software testing is difficult and costly
= Oneform of testing is white box testing

* The actual source code is available

= There are anumber of coverage measures

« Did we execute all the statements?

« Did we execute all the control flow edges?
« Did we execute all the control flow paths?
« Did we exercise al def-use chains?

UW CSE401 AQ 2000 + D. Notkin « All rights reserved + Miscellaneous A « Slide 10

Program transformation

= Compilerstrandate from source to target code

= Some tools do a source-to-source trandation

= One approach that uses thisis for program
restructuring

= Weareinterested in restructuring, since program
structure tends to degrade over time

= But people don't often restructurein practice

« Doesn’'t make money now, introduces new bugs, decreases
understanding, political pressures, who wantsto do it, hard
to predict lifetime costs & benefits

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 11

Griswold’ s approach

Griswold developed an approach to meaning-
preserving restructuring

= Makealoca change

« Thetool finds global, compensating changes that
ensure that the meaning of the program is preserved
—What does it mean for two programs to have the same
meaning?
« If it cannot find these, it aborts the local change

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 12

Simple example

= It'snot aloca change nor a
syntactic change
leng T F « It requires semantic
| | knowledge about the
: | programming language
= Griswold uses avariant of

'! procedure pushi(s, v!

‘ insert (v, s.head)

push{myStack,1)

[the sequence-congruence
[theorem [Yang] for
LpushmyStack, himyStack)) | equivalence

« Based on PDGs
= It'san O(1) tool

UW CSE401 AQ 2000 « D. Notkin * All rights reserved « Miscellaneous A + Slide 13

Limited power

The actual tool and approach has limited power

Indeed, too limited to be useful in practice
* PDGs arelimiting
— Big and expensive to manipulate
— Difficult to handle in the face of multiple files, etc.
May encourage systematic restructuring in
some cases

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 14

Reverse engineering

2] Gonerd (0% 67%) ot o] Caneraz (05100%)

= Trying to find good designs in code whose structure has
degraded
* eg, Rigi, various clustering algorithms (Rigi is used above)

UW CSE401 AQ 2000 + D. Notkin « All rights reserved » Miscellaneous A « Slide 15

Clustering

The basic ideais to take one or more source
models (e.g., dependence relations) of the code
and find appropriate clusters that might
indicate “good” modules

Coupling and cohesion, of various definitions,
are at the heart of most clustering approaches

Many different algorithms

UW CSE401 AQ 2000 + D. Notkin « All rights reserved + Miscellaneous A « Slide 16

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 17

Rigi’s approach

Extract dependence relations (they call them resource
relations)
Build edge-weighted resource flow graphs

« Discrete sets on the edges, representing the resources that

flow from source to sink

Compose these to represent subsystems

« Looking for strong cohesion, weak coupling
The systems uses definitions of interconnection
strength and similarity measures (with tunable
thresholds)

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 18

Math. concept analysis

= Define relationships between (for instance) functions and
global variables[Snelting et a.]
= Compute a concept lattice capturing the structure
« “Clean” lattices = nice structure
« “ugly” ones = bad structure

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 19

An aerodynamics program

= 106KLOC Fortran ===
= 20 yearsold
= 317 subroutines

= 492 global
variables

= 46 COMMON
blocks

UW CSE401 AQ 2000 « D. Notkin « All rights reserved « Miscellaneous A « Slide 20

Recap

= The point of today’s lecture is to show that
many compiler-like analyses and
representations can be used for other kinds of
software engineering tools
« Slicing, testing, reverse/re-engineering, etc.

