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Introduction to 
Bottom-Up Parsing
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Outline

� The strategy: shift-reduce parsing
� LR(0) example
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Predictive Parsing Summary

� First and Follow sets are used to construct 
predictive tables
� For non-terminal A and input t, 

use a production    A → α   where   t ∈ First(α)

� For non-terminal A and input t, 
if ε ∈ First(A) and  t ∈ Follow(α), then 
use a production  A → α   where  ε ∈ First(α)
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Bottom-Up Parsing

� Bottom-up parsing is more general than top-
down parsing
� And just as efficient
� Builds on ideas in top-down parsing

� Bottom-up is the preferred method in 
practice
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An Introductory Example

� Bottom-up parsers don�t need left-factored 
grammars

� Hence we can revert to a �natural� grammar 
for our example:

E → T + E | T
T → int * T | int | (E)

� Consider the string: int * int + int
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The Idea

Bottom-up parsing reduces a string to the start 
symbol by inverting productions:

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T  + int
T → intint * int + int
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Observation

� Read the productions found by bottom-up 
parse in reverse (i.e., from bottom to top)

� This is a rightmost derivation!

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T  + int
T → intint * int + int
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Important Fact #1

Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost 
derivation in reverse
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A Bottom-up Parse

E

T + E

T + T

T + int

int * T  + int

int * int + int E

T E

+ int*int

T

int

T
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A Bottom-up Parse in Detail (1)

+ int*int int

int * int + int
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A Bottom-up Parse in Detail (2)

int * T  + int

int * int + int

+ int*int int

T
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A Bottom-up Parse in Detail (3)

T + int

int * T  + int

int * int + int

T

+ int*int int

T



3

CSE 401 Fall 2000 13

A Bottom-up Parse in Detail (4)

T + T

T + int

int * T  + int

int * int + int

T

+ int*int

T

int

T
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A Bottom-up Parse in Detail (5)

T + E

T + T

T + int

int * T  + int

int * int + int

T E

+ int*int

T

int

T
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A Bottom-up Parse in Detail (6)

E

T + E

T + T

T + int

int * T  + int

int * int + int E

T E

+ int*int

T

int

T
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Question

How do we choose the substring to reduce at 
each step?
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How to build the house of cards?
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Where Do Reductions Happen

Important Fact #1 has an interesting 
consequence:
� Let αβω be a step of a bottom-up parse
� Assume the next reduction is by X→ β
� Then ω is a string of terminals

Why? Because αXω → αβω is a step in a right-
most derivation
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Notation

� Idea: Split string into two substrings
� Right substring is as yet unexamined by parsing         

(a string of terminals)
� Left substring has terminals and non-terminals

� The dividing point is marked by a |
� The | is not part of the string
� Some texts use !

� Initially, all input is unexamined |x1x2 . . . xn
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Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of 
actions:

Shift

Reduce
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Shift

� Shift: Move | one place to the right
� Shifts a terminal to the left string

ABC|xyz  ⇒ ABCx|yz 
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Reduce

� Apply an inverse production at the right end 
of the left string
� If A → xy is a production, then

Cbxy|ijk  ⇒ CbA|ijk 
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The Example with Shift-Reduce Parsing

reduce T → intT + int |
shiftT + | int

shiftint | * int + int
shiftint  * | int + int

shift|int * int + int

E |
reduce E → T + ET + E |
reduce E → TT + T |

shiftT | + int
reduce T → int * Tint * T | + int
reduce T → intint * int | + int
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A Shift-Reduce Parse in Detail (1)

+ int*int int
↑

|int * int + int
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A Shift-Reduce Parse in Detail (2)

+ int*int int
↑

int | * int + int
|int * int + int
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A Shift-Reduce Parse in Detail (3)

+ int*int int
↑

int | * int + int
int  * | int + int

|int * int + int
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A Shift-Reduce Parse in Detail (4)

+ int*int int
↑

int | * int + int
int  * | int + int

|int * int + int

int * int | + int
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A Shift-Reduce Parse in Detail (5)

+ int*int int

T

int | * int + int
int  * | int + int

|int * int + int

int * T | + int
int * int | + int

↑
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A Shift-Reduce Parse in Detail (6)

T

+ int*int int

T

int | * int + int
int  * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑
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A Shift-Reduce Parse in Detail (7)

T

+ int*int int

TT + | int

int | * int + int
int  * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑
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A Shift-Reduce Parse in Detail (8)

T

+ int*int int

T
T + int |
T + | int

int | * int + int
int  * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑
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A Shift-Reduce Parse in Detail (9)

T

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int  * | int + int

|int * int + int

T + T |

T | + int
int * T | + int
int * int | + int

↑
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A Shift-Reduce Parse in Detail (10)

T E

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int  * | int + int

|int * int + int

T + E |
T + T |

T | + int
int * T | + int
int * int | + int

↑
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A Shift-Reduce Parse in Detail (11)

E

T E

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int  * | int + int

|int * int + int

E |
T + E |
T + T |

T | + int
int * T | + int
int * int | + int

↑
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The Stack

� Left string can be implemented by a stack
� Top of the stack is the |

� Shift pushes a terminal on the stack

� Reduce pops 0 or more symbols off of the 
stack (production rhs) and pushes a non-
terminal on the stack (production lhs)
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Key Issue (will be resolved by algorithms)

� How do we decide when to shift or reduce?
� Consider step int | * int + int
� We could reduce by T → int giving T | * int + int
� A fatal mistake: No way to reduce to the start 

symbol E
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Conflicts

� Generic shift-reduce strategy:
� If there is a handle on top of the stack, reduce
� Otherwise, shift

� But what if there is a choice?
� If it is legal to shift or reduce, there is a 

shift-reduce conflict
� If it is legal to reduce by two different 

productions, there is a reduce-reduce conflict
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Source of Conflicts

� Ambiguous grammars always cause conflicts

� But beware, so do many non-ambiguous 
grammars
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Conflict Example

Consider our favorite ambiguous grammar:

int|
(E)|
E * E|
E + E→E
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One Shift-Reduce Parse

E |
reduce E → E + EE + E |

. . .. . .
reduce E → E * EE * E | + int

shift|int * int + int

reduce E → intE + int|
shiftE + | int
shiftE | + int
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Another Shift-Reduce Parse

E |
reduce E → E * EE * E |

. . .. . .
shiftE * E | + int

shift|int * int + int

reduce E → E + EE * E + E|
reduce E → intE * E + int |
shiftE * E + | int
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Example Notes

� In the second step E * E | + int we can either 
shift or reduce by E → E * E

� Choice determines associativity of + and *

� As noted previously, grammar can be rewritten 
to enforce precedence

� Precedence declarations are an alternative
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Precedence Declarations Revisited

� Precedence declarations cause shift-reduce 
parsers to resolve conflicts in certain ways

� Declaring �* has greater precedence than +� 
causes parser to reduce at E * E | + int 

� More precisely, precedence declaration is 
used to resolve conflict between reducing a * 
and shifting a +
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Precedence Declarations Revisited (Cont.)

� The term �precedence declaration� is 
misleading

� These declarations do not define precedence; 
they define conflict resolutions
� Not quite the same thing!
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Nitty Gritty Algorithms

� See pages 215-257 in the Dragon Book
� How to determine handles
� Algorithms to construct a DFA describing a parse
� LR(0), LR(1), SLR, LALR

� Next class
� Yacc does most of it for you


