
1

CSE 401 Fall 2000 1

Introduction to
Bottom-Up Parsing

CSE 401 Fall 2000 2

Outline

� The strategy: shift-reduce parsing
� LR(0) example

CSE 401 Fall 2000 3

Predictive Parsing Summary

� First and Follow sets are used to construct
predictive tables
� For non-terminal A and input t,

use a production A → α where t ∈ First(α)

� For non-terminal A and input t,
if ε ∈ First(A) and t ∈ Follow(α), then
use a production A → α where ε ∈ First(α)

CSE 401 Fall 2000 4

Bottom-Up Parsing

� Bottom-up parsing is more general than top-
down parsing
� And just as efficient
� Builds on ideas in top-down parsing

� Bottom-up is the preferred method in
practice

CSE 401 Fall 2000 5

An Introductory Example

� Bottom-up parsers don�t need left-factored
grammars

� Hence we can revert to a �natural� grammar
for our example:

E → T + E | T
T → int * T | int | (E)

� Consider the string: int * int + int

CSE 401 Fall 2000 6

The Idea

Bottom-up parsing reduces a string to the start
symbol by inverting productions:

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T + int
T → intint * int + int

2

CSE 401 Fall 2000 7

Observation

� Read the productions found by bottom-up
parse in reverse (i.e., from bottom to top)

� This is a rightmost derivation!

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T + int
T → intint * int + int

CSE 401 Fall 2000 8

Important Fact #1

Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost
derivation in reverse

CSE 401 Fall 2000 9

A Bottom-up Parse

E

T + E

T + T

T + int

int * T + int

int * int + int E

T E

+ int*int

T

int

T

CSE 401 Fall 2000 10

A Bottom-up Parse in Detail (1)

+ int*int int

int * int + int

CSE 401 Fall 2000 11

A Bottom-up Parse in Detail (2)

int * T + int

int * int + int

+ int*int int

T

CSE 401 Fall 2000 12

A Bottom-up Parse in Detail (3)

T + int

int * T + int

int * int + int

T

+ int*int int

T

3

CSE 401 Fall 2000 13

A Bottom-up Parse in Detail (4)

T + T

T + int

int * T + int

int * int + int

T

+ int*int

T

int

T

CSE 401 Fall 2000 14

A Bottom-up Parse in Detail (5)

T + E

T + T

T + int

int * T + int

int * int + int

T E

+ int*int

T

int

T

CSE 401 Fall 2000 15

A Bottom-up Parse in Detail (6)

E

T + E

T + T

T + int

int * T + int

int * int + int E

T E

+ int*int

T

int

T

CSE 401 Fall 2000 16

Question

How do we choose the substring to reduce at
each step?

CSE 401 Fall 2000 17

How to build the house of cards?

CSE 401 Fall 2000 18

Where Do Reductions Happen

Important Fact #1 has an interesting
consequence:
� Let αβω be a step of a bottom-up parse
� Assume the next reduction is by X→ β
� Then ω is a string of terminals

Why? Because αXω → αβω is a step in a right-
most derivation

4

CSE 401 Fall 2000 19

Notation

� Idea: Split string into two substrings
� Right substring is as yet unexamined by parsing

(a string of terminals)
� Left substring has terminals and non-terminals

� The dividing point is marked by a |
� The | is not part of the string
� Some texts use !

� Initially, all input is unexamined |x1x2 . . . xn

CSE 401 Fall 2000 20

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of
actions:

Shift

Reduce

CSE 401 Fall 2000 21

Shift

� Shift: Move | one place to the right
� Shifts a terminal to the left string

ABC|xyz ⇒ ABCx|yz

CSE 401 Fall 2000 22

Reduce

� Apply an inverse production at the right end
of the left string
� If A → xy is a production, then

Cbxy|ijk ⇒ CbA|ijk

CSE 401 Fall 2000 23

The Example with Shift-Reduce Parsing

reduce T → intT + int |
shiftT + | int

shiftint | * int + int
shiftint * | int + int

shift|int * int + int

E |
reduce E → T + ET + E |
reduce E → TT + T |

shiftT | + int
reduce T → int * Tint * T | + int
reduce T → intint * int | + int

CSE 401 Fall 2000 24

A Shift-Reduce Parse in Detail (1)

+ int*int int
↑

|int * int + int

5

CSE 401 Fall 2000 25

A Shift-Reduce Parse in Detail (2)

+ int*int int
↑

int | * int + int
|int * int + int

CSE 401 Fall 2000 26

A Shift-Reduce Parse in Detail (3)

+ int*int int
↑

int | * int + int
int * | int + int

|int * int + int

CSE 401 Fall 2000 27

A Shift-Reduce Parse in Detail (4)

+ int*int int
↑

int | * int + int
int * | int + int

|int * int + int

int * int | + int

CSE 401 Fall 2000 28

A Shift-Reduce Parse in Detail (5)

+ int*int int

T

int | * int + int
int * | int + int

|int * int + int

int * T | + int
int * int | + int

↑

CSE 401 Fall 2000 29

A Shift-Reduce Parse in Detail (6)

T

+ int*int int

T

int | * int + int
int * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑

CSE 401 Fall 2000 30

A Shift-Reduce Parse in Detail (7)

T

+ int*int int

TT + | int

int | * int + int
int * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑

6

CSE 401 Fall 2000 31

A Shift-Reduce Parse in Detail (8)

T

+ int*int int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑

CSE 401 Fall 2000 32

A Shift-Reduce Parse in Detail (9)

T

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

T + T |

T | + int
int * T | + int
int * int | + int

↑

CSE 401 Fall 2000 33

A Shift-Reduce Parse in Detail (10)

T E

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

T + E |
T + T |

T | + int
int * T | + int
int * int | + int

↑

CSE 401 Fall 2000 34

A Shift-Reduce Parse in Detail (11)

E

T E

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

E |
T + E |
T + T |

T | + int
int * T | + int
int * int | + int

↑

CSE 401 Fall 2000 35

The Stack

� Left string can be implemented by a stack
� Top of the stack is the |

� Shift pushes a terminal on the stack

� Reduce pops 0 or more symbols off of the
stack (production rhs) and pushes a non-
terminal on the stack (production lhs)

CSE 401 Fall 2000 36

Key Issue (will be resolved by algorithms)

� How do we decide when to shift or reduce?
� Consider step int | * int + int
� We could reduce by T → int giving T | * int + int
� A fatal mistake: No way to reduce to the start

symbol E

7

CSE 401 Fall 2000 37

Conflicts

� Generic shift-reduce strategy:
� If there is a handle on top of the stack, reduce
� Otherwise, shift

� But what if there is a choice?
� If it is legal to shift or reduce, there is a

shift-reduce conflict
� If it is legal to reduce by two different

productions, there is a reduce-reduce conflict

CSE 401 Fall 2000 38

Source of Conflicts

� Ambiguous grammars always cause conflicts

� But beware, so do many non-ambiguous
grammars

CSE 401 Fall 2000 39

Conflict Example

Consider our favorite ambiguous grammar:

int|
(E)|
E * E|
E + E→E

CSE 401 Fall 2000 40

One Shift-Reduce Parse

E |
reduce E → E + EE + E |

.
reduce E → E * EE * E | + int

shift|int * int + int

reduce E → intE + int|
shiftE + | int
shiftE | + int

CSE 401 Fall 2000 41

Another Shift-Reduce Parse

E |
reduce E → E * EE * E |

.
shiftE * E | + int

shift|int * int + int

reduce E → E + EE * E + E|
reduce E → intE * E + int |
shiftE * E + | int

CSE 401 Fall 2000 42

Example Notes

� In the second step E * E | + int we can either
shift or reduce by E → E * E

� Choice determines associativity of + and *

� As noted previously, grammar can be rewritten
to enforce precedence

� Precedence declarations are an alternative

8

CSE 401 Fall 2000 43

Precedence Declarations Revisited

� Precedence declarations cause shift-reduce
parsers to resolve conflicts in certain ways

� Declaring �* has greater precedence than +�
causes parser to reduce at E * E | + int

� More precisely, precedence declaration is
used to resolve conflict between reducing a *
and shifting a +

CSE 401 Fall 2000 44

Precedence Declarations Revisited (Cont.)

� The term �precedence declaration� is
misleading

� These declarations do not define precedence;
they define conflict resolutions
� Not quite the same thing!

CSE 401 Fall 2000 45

Nitty Gritty Algorithms

� See pages 215-257 in the Dragon Book
� How to determine handles
� Algorithms to construct a DFA describing a parse
� LR(0), LR(1), SLR, LALR

� Next class
� Yacc does most of it for you

