
CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 1

1

CSE401: Storage Layout

Larry Ruzzo
Spring 2002

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2002

2

Run-time storage layout:
focus on compilation, not interpretation

n Plan how and where to keep data at run-time
n Representation of

n int, bool, etc.
n arrays, records, etc.
n procedures

n Placement of
n global variables
n local variables
n parameters
n results

3

Data layout of scalars
Based on machine representation

Use hardware representation

(2, 4, or 8 bytes, maybe two words if
segmented machine)

Pointer

1-2 bytes or wordChar

1 byte or wordBool

Use hardware representation

(2, 4, and/or 8 bytes of memory, maybe
aligned)

Integer

4

Data layout of aggregates

n Aggregate scalars together
n Different compilers make different decisions
n Decisions are sometimes machine dependent

n Note that through the discussion of the front-end,
we never mentioned the target machine

n We didn’t in interpretation, either
n But now it’s going to start to come up constantly

n Necessarily, some of what we will say will be
"typical", not universal.

5

Layout of records

n Concatenate layout
of fields
n Respect alignment

restrictions
n Respect field order, if

required by language
n Why might a

language choose to
do this or not do this?

n Respect contiguity?

r : record
b : bool;
i : int;
m : record

b : bool;
c : char;

end
j : int;

end;

6

Layout of arrays

n Repeated layout of
element type
n Respect alignment of

element type

n How is the length of
the array handled?

s : array [5] of
record;

i : int;
c : char;

end;

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 2

7

Layout of multi-dimensional
arrays

n Recursively apply
layout rule to
subarray first

n This leads to row-
major layout

n Alternative: column-
major layout
n Most famous

example: FORTRAN

a : array [3] of
array [2] of

record;
i : int;
c : char;

end;

a[1][1]
a[1][2]
a[2][1]
a[2][2]
a[3][1]
a[3][2]

8

Implications of Array Layout

n Which is better if row-major? col-major?
a:array [1000, 2000] of int;

for i:= 1 to 1000 do

for j:= 1 to 2000 do

a[i,j] := 0 ;

for j:= 1 to 2000 do

for i:= 1 to 1000 do

a[i,j] := 0 ;

9

Dynamically sized arrays
n Arrays whose length is

determined at run-time
n Different values of the same

array type can have different
lengths

n Can store length implicitly
in array
n Where? How much space?

n Dynamically sized arrays
require pointer indirection
n Each variable must have

fixed, statically known size

a : array of

record;
i : int;
c : char;

end;

10

Dope vectors
n PL/1 handled arrays differently, in particular

storage of the length
n It used something called a dope vector, which

was a record consisting of
n A pointer to the array
n The length of the array
n Subscript bounds for each dimension

n Arrays could change locations in memory and
size quite easily

11

String representation

n A string ≈ an array of characters
n So, can use array layout rule for strings

n Pascal, C strings: statically determined length
n Layout like array with statically determined length

n Other languages: strings have dynamically
determined length
n Layout like array with dynamically determined

length
n Alternative: special end-of-string char (e.g., \0)

12

Storage allocation strategies
n Given layout of data structure, where in

memory to allocate space for each instance?
n Key issue: what is the lifetime (dynamic

extent) of a variable/data structure?
n Whole execution of program (e.g., global

variables)
⇒ Static allocation

n Execution of a procedure activation (e.g., locals)
⇒ Stack allocation

n Variable (dynamically allocated data)
⇒ Heap allocation

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 3

13

Parts of run-time memory
n Code/Read-only data area

n Shared across processes
running same program

n Static data area
n Can start out initialized or

zeroed

n Heap
n Can expand upwards through

(e.g. sbrk) system call

n Stack
n Expands/contracts downwards

automatically
code/RO data

static data

heap

stack

14

Static allocation
n Statically allocate variables/data structures

with global lifetime
n Machine code
n Compile-time constant scalars, strings, arrays, etc.
n Global variables
n static locals in C, all variables in FORTRAN

n Compiler uses symbolic addresses
n Linker assigns exact address, patches

compiled code

15

Stack allocation
n Stack-allocate variables/data structures with

LIFO lifetime
n Data doesn’t outlive previously allocated data on

the same stack

n Stack-allocate procedure activation records
n A stack-allocated activation record = a stack frame
n Frame includes formals, locals, temps
n And housekeeping: static link, dynamic link, …

n Fast to allocate and deallocate storage
n Good memory locality

16

Stack allocation II

n What about
variables local to
nested scopes
within one
procedure?

procedure P() {

int x;

for(int i=0; i<10; i++){

double x;

…

}

for(int j=0; j<10; j++){

double y;

…

}

}

17

Stack allocation: constraints I
n No references

to stack-
allocated data
allowed after
returns

n This is violated
by general
first-class
functions

proc foo(x:int): proctype(int):int;
proc bar(y:int):int;
begin
return x + y;

end bar;
begin
return bar;

end foo;

var f:proctype(int):int;
var g:proctype(int):int;

f := foo(3); g := foo(4);
output := f(5); output := g(6);

18

Stack allocation: constraints II
n Also violated if

pointers to locals
are allowed

proc foo (x:int): *int;
var y:int;

begin
y := x * 2;
return &y;

end foo;

var w,z:*int;

z := foo(3);
w := foo(4);

output := *z;
output := *w;

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 4

19

Heap allocation
n For data with unknown lifetime

n new/malloc to allocate space
n delete/free/garbage collection to deallocate

n Heap-allocate activation records of first-class
functions

n Relatively expensive to manage
n Can have dangling reference, storage leaks

n Garbage collection reduces (but may not
eliminate) these classes of errors

20

Stack frame layout
n Need space for

n Formals
n Locals
n Various housekeeping data

n Dynamic link (pointer to caller’s stack frame)
n Static link (pointer to lexically enclosing stack frame)
n Return address, saved registers, …

n Dedicate registers to support stack access
n FP - frame pointer: ptr to start of stack frame (fixed)
n SP - stack pointer: ptr to end of stack (can move)

21

Key property

n All data in stack frame is at a fixed, statically
computed offset from the FP

n This makes it easy to generate fast code to
access the data in the stack frame
n And even lexically enclosing stack frames

n Can compute these offsets solely from the
symbol tables
n Based also on the chosen layout approach

22

...
ca

lle
r’s

 fr
am

e.
..

fo
rm

al
 N

fo
rm

al
 N

-1

... fo
rm

al
 1

st
at

ic
 li

nk

re
tu

rn
 a

dd
re

ss

dy
na

m
ic

 li
nk

sa
ve

d
re

gi
st

er
s

lo
ca

l N

lo
ca

l N
-1

...

lo
ca

l 1

ar
g

N

ar
g

N
-1

... ar
g

1
ca

lle
e’

s
st

at
ic

 li
nk

F
P S
P

st
ac

k
gr

ow
s

do
w

n

hi
gh

ad
dr

es
se

s

lo
w

ad
dr

es
se

s

one stack frame
Stack Layout

23

Accessing locals

n If a local is in the same stack frame then
t := *(fp + local_offset)

n If in lexically-enclosing stack frame
t := *(fp + static_link_offset)
t := *(t + local_offset)

n If farther away
t := *(fp + static_link_offset)
t := *(t + static_link_offset)
…
t := *(t + local_offset)

24

At compile-time…

n …need to calculate
n Difference in nesting depth of use and

definition
n Offset of local in defining stack frame
n Offsets of static links in intervening frames

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 5

25

Calling conventions

n Define responsibilities of caller and callee
n To make sure the stack frame is properly set up

and torn down

n Some things can only be done by the caller
n Other things can only be done by the callee
n Some can be done by either
n So, we need a protocol

26

PL/0 calling sequence
n Caller

n Evaluate actual args
n Order?

n Push onto stack
n Order?
n Alternative: First k

args in registers

n Push callee’s static link
n Or in register?

Before or after stack
arguments?

n Execute call instruction
n Hardware puts return

address in a register

n Callee
n Save return address on stack
n Save caller’s frame pointer

(dynamic link) on stack
n Save any other registers that

might be needed by caller
n Allocates space for locals,

other data
sp := sp – size_of_locals

– other_data

n Locals stored in what order?

n Set up new frame pointer
(fp := sp)

n Start executing callee’s code

27

PL/0 return sequence
n Callee

n Deallocate space for
local, other data
sp := sp + size_of_locals

+ other_data

n Restore caller’s frame
pointer, return address &
other regs, all without
losing addresses of stuff
still needed in stack

n Execute return instruction

n Caller
n Deallocate space

for callee’s static
link, args
n sp := fp

n Continue execution
in caller after call

28

Accessing callee procedures
similar to accessing locals

n Call to procedure declared in same scope:
static_link := fp
call p

n Call to procedure in lexically-enclosing scope:
static_link := *(fp + static_link_offset)
call p

n If farther away
t := *(fp + static_link_offset)
t := *(t + static_link_offset)
…
static_link := *(t + static_link_offset)
call p

29

Some questions
n Return values?
n Local, variable-sized, arrays

proc P(int n) {

var x array[1 .. n] of int;

var y array[-5 .. 2*n] of array[1 .. n] int;

…

}

n Max length of dynamic-link chain?
n Max length of static-link chain?

30

Exercise: apply to this example
module M;
var x:int;
proc P(y:int);

proc Q(y:int);
var qx:int;
begin R(x+y);end Q;

proc R(z:int);
var rx,ry:int;
begin P(x+y+z);end R;

begin Q(x+y); R(42); P(0); end P;
begin
x := 1;
P(2);

end M.

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 6

32

static link
return address

dynamic link

saved registers

y static link
return address

saved registers

y

qx

dynamic link

static link
return address

saved registers

z

ry

dynamic link

rx

static link
return address

saved registers

x

dynamic link

M x int 0
P proc
sl
dl

Q y int
qx int
sl
dl

P

R z int
rx int
ry int
sl
dl

y int
Q proc
R proc
sl
dl

P

Exercise: stack frames

33

What do these mean?
proc P(int a);
begin

i := i + 5;
output := a;
output := a+1;
a := a+1;
output := a;

end;

int i=2;

P(i); output i;
P(2); output 2;

proc Q(int a,int b);
int c;

begin
c := a;
a := b;
b := c;

end;

int i=2; j=3;

Q(i,j);

34

Parameter passing
n When passing args, need to support right semantics
n Issue #1: when is argument expression evaluated?

n Before call?
n When first used by callee?
n At every use by callee?

n Issue #2: what happens if callee assigns to formal?
n Is this visible to the caller? If so, when?
n What happens with aliasing among arguments and lexically

visible variables?

n Different choices lead to
n Different representations for passed arguments and
n Different code to access formals

35

Parameter passing modes

n call-by-value
n call-by-sharing
n call-by-reference
n call-by-value-result
n call-by-name
n call-by-need
n …

36

Call-by-value
n Assignment to

formal doesn’t
affect caller’s
value

n Implementation:
pass copy of
argument value
n Trivial for scalars
n Inefficient for

aggregates(?)

var a : int;
proc foo(x:int,y:int);
begin
x := x + 1;
y := y + a;

end foo;

a := 2;
foo(a,a);
output := a;

37

Call-by-reference
n Assignment to formal

changes actual value
in caller
n Immediately
n Actual must be lvalue

n Implementation: pass
pointer to actual
n Efficient for big data

structures(?)
n References to formal

must do extra
dereference

var a : int;
proc foo(x:int,y:int);
begin
x := x + 1;
y := y + a;

end foo;

a := 2;
foo(a,a);
output := a;

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 7

38

Big immutable data
for example, a constant string

n Suppose language has call-by-value
semantics

n But, it’s expensive to pass by-value
n Could implement as call-by-reference

n Since you can’t assign to the data, you
don’t care

n Let the compiler decide?

39

Call-by-value-result
n Assignment to formal

copies final value back
to caller on return
n “copy-in, copy-out”

n Implement as call-by-
value with copy back
when procedure returns
n More efficient than call-

by-reference
n For scalars?
n For arrays?

var a : int;
proc
foo(x:int,y:int);
begin
x := x + 1;
y := y + a;

end foo;

a := 2;
foo(a,a);
output := a;

40

Call-by-result
var a : int;
proc foo(x:int,y:int);
begin
x := x + 1;
y := y + a;

end foo;

a := 2;
foo(a,a);
output := a;

41

Ada: in, out, in out

n Programmer selects intent
n Compiler decides which mechanism is

more efficient
n Program’s meaning “shouldn’t” depend

on which is chosen

42

Call-by-name, call-by-need
n Variations on lazy evaluation

n Only evaluate argument expression if and when
needed by callee

n Supports very cool programming tricks
n Somewhat hard to implement efficiently in

traditional compilers
n Thunks

n Largely incompatible with side-effects
n So more common in purely functional languages

like Haskell and Miranda
n But did appear first in Algol-60

43

Call-by-name
n Replace each use of a

parameter in the callee, by
the text of the actual
parameter, but in the
caller’s context

n This implies reevaluation of
the actual every time the
formal parameter is used
n And evaluation of the actual

might return different values
each time

proc square(x);
int x;
begin
x := x * x

end;

square(A[i]);

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 8

44

Jensen’s device
n How to implement the

equivalent of a math
formula like Σ0≤i ≤n A2i

sum(i,0,n,A[2*i])?

n Pass by-reference or
by-value do not work,
since they can only
pass one element of A

n So: Jensen’s device

int proc sum(j,lo,hi,Aj);
int j, lo, hi, Aj, s;

begin
s := 0;
for j := lo to hi do

s := s + Aj;
end;
return s;

end;

45

A classic problem:
a procedure to swap two elements

proc swap(int a,int b);
int temp;

begin
temp := a;
a := b;
b := temp;

end;

n int x, y;

x = 2;

y = 5;

swap(x, y);

n int j, z[10];

j = 2;

z[2] = 5;

swap(j, z[j]);

46

Call-by-name advantages

n Textual substitution is a simple, clear
semantic model

n There are some useful applications, like
Jensen’s device

n Argument expressions are evaluated
lazily

47

Call-by-name disadvantages

n Repeatedly evaluating arguments can
be inefficient

n Pass-by-name precludes some standard
procedures from being implemented

n Pass-by-name is difficult to implement

48

thunks

n Call-by-name arguments are compiled to
thunks, special parameter-less procedures
n One gives value of actual, appropriately evaluated

in caller’s environment
n Other gives l-value, again in caller's environment

n Thunks are passed into the called procedure
and called to evaluate the argument
whenever necessary

49

Parameters and compiling

n There is an intimate link between the
semantics of a programming language and
the mechanisms used for parameter passing

n Maybe more than other programming
language constructs, the connection is
extremely strong between implementation
and language semantics in this area

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002 9

50

PL/0 storage allocation
n How and when it is decided how big a stack frame

will be?
n It’s necessary that the frame always be the same size for

every invocation of a given procedure

n Also, how and when is it decided exactly where in a
stack frame specific data will be?
n Some pieces are decided a priori (such as the return

address)
n Others must be decided during compile-time, such as local

variables (since the number and size can’t be known
beforehand)

n This is all done during the storage allocation phase

51

PL/0 storage allocation
void SymTabScope::allocateSpace() {

_localsSize = 0;
_formalsSize = 0;

for (int i = 0; i < _symbols->length(); i++)
{

_symbols->fetch(i)->allocateSpace(this);
}

for (int j = 0; j < _children->length(); j++)
{

_children->fetch(j)->allocateSpace();
}

}

52

int SymTabScope::allocateFormal(int size) {
int offset = _formalsSize;
_formalsSize += size;
return offset;

}
int SymTabScope::allocateLocal(int size) {

int offset = _localsSize;
_localsSize += size;
return offset;

}

void VarSTE::allocateSpace(SymTabScope* s) {
int size = _type->size();
_offset = s->allocateLocal(size);

}
void FormalSTE::allocateSpace(SymTabScope* s) {

int size = _type->size();
_offset = s->allocateFormal(size);

}

