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Objectives (today and tomorrow)

n Define overall theory and practical structure 
of lexical analysis

n Briefly recap regular languages, expressions, 
finite state machines, and their relationships

n How to define tokens with regular expressions

n How to leverage this  to implement a lexer
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Lexical analysis (scanning)

n The scanner/lexer groups characters into tokens
n A token is a basic, atomic chunk of syntax, e.g.

n Literals:  17, 42, 3. 1415,  " Hel l o. " , …
n Punctuation & operators:  } ,  ) , ] ,  ; , : =,  <,  <=, …
n Reserved words:  i f , t hen, el se, f or , whi l e, i nt ,  char , …
n Identifiers:  snor k , x , dogber t ,  sqr t ,  pr i nt f , …

n The lexer also removes whitespace
n Whitespace: characters that are ignored between tokens
n Ex: spaces, tabs, newlines, comments

n Definitions of tokens and whitespace vary among languages

Source
Program

stream
of characters

sequence
of tokens

Lexical
analysis
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Separation of lexing & parsing
n A universal separation: 

n Lexer: character stream to token stream 
n Parser: token stream to syntax tree

n Advantages:
n Simpler design

n Based on related but distinct theoretical underpinnings
n Compartmentalizes some low-level issues, e.g., I/O, 

internationalization, …

n Faster
n Lexing is time-consuming in many compilers (40-60% ?)
n By restricting the job of the lexer, a faster implementation 

is usually feasible
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Overall approach to scanning
n Define language tokens using regular expressions

n Natural representation for tokens
n But difficult to produce a scanner from REs

n Convert the regular expressions into a non-
deterministic finite state automaton (NFA)
n Straightforward conversion
n Can produce a scanner from NFA, but an inefficient one

n Convert the NFA into a deterministic finite state 
automaton (DFA)
n Straightforward conversion

n Convert the DFA into an efficient scanner 
implementation
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Language & automata theory:  
a speedy reminder

n Alphabet: a finite set of symbols
n String: a finite, possibly empty, sequence of symbols 

from an alphabet
n Language: a set, often infinite, of strings 
n Finite specifications of (possibly infinite) languages:

n Automaton – a recognizer;  a machine that accepts all 
strings in the language (and rejects all other strings)

n Grammar – a generator; a system for producing all strings in 
the language (and no other strings)

n A language may be specified by many different 
grammars and automata

n A grammar or automaton specifies only one language
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Definitions: token vs lexeme

n Token: an "atom of syntax"; set of lexemes
n Ex: int literal, string literal, identifier, keyword-if

n Lexeme: the character string forming a token
n Ex:  17, 42, "Hello", "Goodbye", x, dogbert, if

n A token may have attributes, if the set has 
more than a single lexeme
n "int literal" token might have attribute "17" or "42"
n "keyword-if" token probably needs no attributes
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Regular expressions:
a notation for defining tokens

n Regular expressions (REs) 
are defined inductively:

n Base cases
n The empty string (ε)
n A symbol from the alphabet

n Inductive cases
n Choice of two REs: E1| E2

n Sequence of two REs: E1E2

n Kleene closure (zero or more 
occurrences) of an RE: E*

n Use parentheses for 
grouping

n Whitespace is not 
significant

Increasing 
precedence
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Examples

a
a b
(a | b)
(a | b) c
a | b c
a b*
(a | b)(0 | 1)*
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Notational conveniences:
no additional expressive power

n E+ means one or more occurrences of E

n Ek means k occurrences of E (k a literal constant)

n [ E] means 0 or 1 occurrences of E (it’s optional)
n { E} means E*

n not ( x) means any character in the alphabet but x

n not ( E) means any strings in the alphabet but those
matching E

n E1- E2 means any strings matching E1 except those
matching E2
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Naming regular expressions:
simplify RE definitions

n Can assign names to regular expressions
n Can use these names in the definition of 

another regular expression
n Examples

n l et t er    : : = a |  b |  … |  z

n di gi t     : : = 0 |  1 |  … |  9

n al phanum : : = l et t er  |  di gi t

n Can eliminate names by macro expansion

n No recursive definitions are allowed!  Why?
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Regular expressions for PL/0
Di gi t     : : = 0 |  … |  9
Let t er    : : = a |  … |  z |  A |  … |  Z
I nt eger   : : = Di gi t +

Al phaNum : : = Let t er  |  Di gi t
I d       : : = Let t er  Al phaNum*
Keywor d  : : = module |  procedure |  begin |  end |  const

|  var |  if |  then |  while |  do |  input
|  output |  odd |  int

Punct     : : = ; |  : |  . |  , |  ( |  )
Oper at or  : : = := |  * |  / |  + |  - |  = |  <> |  <= |  < |  >= |  >
Token    : : = I d |  I nt eger  |  Keywor d |  Oper at or  |  Punct
Whi t e    : : = <space> |  <tab> |  <newline>
Pr ogr am  : : = ( Token |  Whi t e) *
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Generate scanner from 
regular expressions?
n This would be ideal: REs as input to a 

scanner generator, and a scanner as output
n Indeed, some tools can mostly do this

n But it’s not straightforward to do this
n One reason: there is a lot of non-determinism —

choice — inherent in most regular expressions
n Choice can be implemented using backtracking, 

but it’s generally very inefficient

n In any case, these tools go through a process 
like the one we’ll look at
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Next steps

n Convert regular expressions to non-
deterministic finite state automata (NFA)

n Then convert the NFA to deterministic 
finite state automata (DFA)

n Then convert DFA into code
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Finite state automaton
n A finite set of states

n One marked as the initial state
n One or more marked as final states

n A set of transitions from state to state
n Each transition is marked with a symbol from the alphabet or 

with ε
n Operate by reading symbols in sequence

n A transition can be taken if it labeled with the current symbol
n An ε-transition can be taken at any point, without consuming 

a symbol

n Accept if no more input and in a final state
n Reject if no transition can be taken or if no more input 

and not in a final state (DFA case)
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DFA vs. NFA

n A deterministic finite state automaton (DFA) is 
one in which there is no choice of which 
transition to take under any condition

n A non-deterministic finite state automaton 
(NFA) is one in which there is a choice of 
which transition to take in at least one 
situation
n "Accept" == some way        to reach final state
n "Reject" == all ways fail       at end of input
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Plan of attack

n Convert from regular expressions to 
NFAs because there is an easy 
construction
n However, NFAs encode choice, and choice 

implies backtracking, which is slow

n Convert from NFAs to DFAs, because 
there is a well-defined procedure
n And DFAs lay the foundation for an 

efficient scanner implementation
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Exercise

n Consider the language that includes 
only those binary strings that have odd 
parity

n For this language, define
n the alphabet
n a grammar
n an automaton
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Converting REs to NFAs:
base cases

ε

x
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E1E2

εE1 E2
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E1| E2

ε
E1

E2
ε

ε

ε
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E*

?
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RE to NFA

n Those rules are sufficient for 
constructing an equivalent NFA from a 
regular expression
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Exercise

n Define a regular expression that 
recognizes comments of the form
n / *  … * /

n Be careful in defining “…”

n Then convert that regular expression to 
an NFA
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Building lexers from regular 
expressions

n Convert the regular expressions into 
deterministic finite state automata (DFA)
n Manually

n Mechanically by converting first to non-
deterministic finite state automata (NDFA) and 
then into DFA

n Convert DFA into scanner implementation
n By hand into a collection of procedures

n Mechanically into a table-driven parser
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Why convert to DFAs?

n Because
n they are equivalent in power to NFAs
n they are deterministic, which makes them a 

terrific basis for an efficient implementation 
of a scanner
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NFA => DFA
n Basic problem

n NFA can choose among alternative paths
n either ε transitions or
n multiple transitions from a state with the same label

n But a DFA cannot have this kind of choice

n Solution: subset construction
n In the newly constructed DFA, each state 

represents a set of states in the NFA, 

n Key Idea: 
the state of the DFA after reading x1x2…xk
is the set of all states that the NFA might 
reach after reading the same input
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Subset construction algorithm
initial step

n Create start state of new DFA
n Label it with the set of NFA states that can be 

reached without consuming any input
n I.e., NFA's start state, or reachable by ε transitions
n Think of it as all possible start states in the NFA, since 

there could be more than one, given the ε transitions

n Then "process" this new start state
n Details below
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Example

1 2
ε

5
a

3 4
b

a a

a | b

Example from 
Crafting a Compiler, 
Fischer & LeBlanc
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Example (cont.)

34

Subset construction algorithm
processing a state

n To process a state S in the new DFA with 
label {s1,…,sn}

n For each symbol x in the alphabet
n Compute the set T of NFA states reached from 

any of the NFA states s1,…,sn by one x transition 
followed by any number of ε transitions

n If T is not empty
n If there is not already a DFA state with T as a label, 

create one, and add T to the list of states to be 
processed

n Add a transition labeled x from S to T

n Repeat until no unprocessed states
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Subset construction algorithm
defining final states

n After the algorithm terminates
n Mark every DFA state as final if any of 

the NFA states in its label is final
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Subset construction: notes

n It is provable that this works and 
produces an equivalent DFA (c.f. CSE 322)

n This activity can be automated
n Question: What can be said about the 

number of states in the DFA relative to 
the NFA?
n In theory?  In practice?
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Minimizing DFAs

n There is also an algorithm for minimizing the 
number of states in a DFA

n Given an arbitrary DFA, one can find a 
unique DFA with a minimum number of states 
that is equivalent to the original DFA
n Except for a renaming of the states

n Essentially, try to merge states
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Constructing scanners from 
DFAs

n Use a table-driven scanner
n Write disciplined procedures that 

encode the DFA
n We’ll talk about both (the first briefly)
n The second approach is used in the 

PL/0 compiler
n Because it’s generally easier to handle a 

few practical issues (but may be slower?)
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Approach 1:  Table-driven
n Represent the DFA as 

an adjacency matrix
n One row per state
n One column per 

character in the alphabet
n Entry is state to transition 

to

n Mechanically walk the 
input, taking appropriate 
transitions
n Rules for termination 

remain unchanged

{5}

{5}{5}{4,5}

{4,5}{5}{3,4,5}

{3,4,5}{1,2}

ba
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Approach 2:  Procedural
n Define a procedure for 

each state in the DFA
n Use conditionals to 

check the input 
character and then 
make the appropriate 
transition

n A transition is a call to 
the procedure for the 
next state

n (Call overhead optimizable)

pr ocedur e { 3, 4, 5}  begi n

i f  next Char ( )  == ‘ a’

cal l  { 5}

el si f  next Char ( )  == ‘ b’

cal l  { 4, 5}

el se

r ej ect ( “ no t r ans i t i on

out  of  t hi s

st at e” )

end
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The heart of the PL/0 scanner
it’s not quite as clean (but it’s not bad!)

Token : : = I d |
I nt eger  |
Keywor d |
Oper at or  |
Punct

n Where’s the DFA?
n How come five kinds of tokens and only three 

branches?

i f  ( i sal pha( Cur r ent Ch) )  {

T = Get I dent ( )

}  el se i f  ( i sdi gi t ( Cur r ent Ch) )  {

T = Get I nt ( )

}  el se {

T = Get Punct ( ) ;

}
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PL/0’s Get I dent method

n Is PL/0 case-
sensitive?

n What does 
Sear chReser ved

return?

Token*  Scanner : : Get I dent ( )  {

char  i dent [ MaxI dLengt h+1] ;

i nt  Lengt hOf I d = 0;

whi l e ( i sal num( Cur r ent Ch) )  {

i dent [ Lengt hOf I d]  =
t ol ower ( Cur r ent Ch) ;

Lengt hOf I d ++;

Get Ch( ) ;

}

i dent [ Lengt hOf I d]  = ' \ 0' ;

r et ur n Sear chReser ved( i dent ) ;

}
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PL/0’s Get I nt method
Token*  Scanner : : Get I nt ( )  {

i nt i nt eger  = 0;
whi l e ( i sdi gi t ( Cur r ent Ch) )  {

i nt eger  = 10 *  i nt eger  + ( Cur r ent Ch - ' 0' ) ;
Get Ch( ) ;

}
r et ur n new I nt eger Token( i nt eger ) ;

}
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PL/0’s GetPunct method

Token*  Scanner : : Get Punct ( )  {

Token*  T;

swi t ch ( Cur r ent Ch)  {

case ' : ' :

Get Ch( ) ;

i f  ( CondReadCh( ' =' ) )  {

T = new Token( GETS) ;

}  el se {

T = new Token( COLON) ;

}

br eak;

case ' <' :

Get Ch( ) ;

i f  ( CondReadCh( ' =' ) )  {

T = new Token( LEQ) ;

}  el se i f  ( CondReadCh( ' >' ) ) {

T = new Token( NEQ) ;

}  el se {

T = new Token( LSS) ;

}

br eak;

…
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A few PL/0 scanner notes
n There is a Scanner class

n There is only one instance of this class
n This is an example of the Singleton design pattern

n The high-level structure we showed has the 
scanner scan before the parser parses
n Study the compiler to figure out what really 

happens

n Make sure (for this and all other phases) to 
read the interface (the . h file) very, very 
carefully
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Language design issues 
(lexical)
n Most languages are now free-form

n Layout doesn’t matter
n Use whitespace to separate tokens, if needed
n Alternatives include

n Fortran, Algol68: whitespace is ignored
n Haskell: use layout to imply grouping

n Most languages now have reserved words
n Cannot be used as identifiers
n Alternative: PL/1 has keywords that are treated specially 

only in certain contexts, but may be used as identifiers, too

n Most languages separate scanning & parsing
n Alternative: C/C++ type vs ident t ypedef  i nt  myt ype;

i nt  myvar ;
myt ype i , j , k;
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Classes of languages
n Regular languages can be 

specified by
n regular expressions
n regular grammars
n finite-state automata (FSA)

n Context-free languages (CFL)
can be specified by
n context-free grammars (CFG)
n push-down automata (PDA)

n Turing-computable languages 
can be specified by
n arbitrary grammars
n Turing machines

Strict inclusion of these 
classes of languages

regular

context-free

Turing-computable

languages

languages

languages

all languages
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Objectives: next lectures

n Understand the theory and practice of 
parsing

n Describe the underlying language 
theory of parsing (CFGs, etc.)

n Understand and be able to perform top-
down parsing

n Understand bottom-up parsing


