
CSE401: Lexical Analysis

Larry Snyder
Autumn 2003

Slides by Chambers, Eggers, Notkin, Ruzzo, Snyder and others

© L. Snyder & UW CSE 1994-2003

2

Objectives (today and tomorrow)

n Define overall theory and practical structure
of lexical analysis

n Briefly recap regular languages, expressions,
finite state machines, and their relationships

n How to define tokens with regular expressions

n How to leverage this to implement a lexer

3

Lexical analysis (scanning)

n The scanner/lexer groups characters into tokens
n A token is a basic, atomic chunk of syntax, e.g.

n Literals: 17, 42, 3. 1415, " Hel l o. " , …
n Punctuation & operators: } ,) ,] , ; , : =, <, <=, …
n Reserved words: i f , t hen, el se, f or , whi l e, i nt , char , …
n Identifiers: snor k , x , dogber t , sqr t , pr i nt f , …

n The lexer also removes whitespace
n Whitespace: characters that are ignored between tokens
n Ex: spaces, tabs, newlines, comments

n Definitions of tokens and whitespace vary among languages

Source
Program

stream
of characters

sequence
of tokens

Lexical
analysis

4

Separation of lexing & parsing
n A universal separation:

n Lexer: character stream to token stream
n Parser: token stream to syntax tree

n Advantages:
n Simpler design

n Based on related but distinct theoretical underpinnings
n Compartmentalizes some low-level issues, e.g., I/O,

internationalization, …

n Faster
n Lexing is time-consuming in many compilers (40-60% ?)
n By restricting the job of the lexer, a faster implementation

is usually feasible

5

Overall approach to scanning
n Define language tokens using regular expressions

n Natural representation for tokens
n But difficult to produce a scanner from REs

n Convert the regular expressions into a non-
deterministic finite state automaton (NFA)
n Straightforward conversion
n Can produce a scanner from NFA, but an inefficient one

n Convert the NFA into a deterministic finite state
automaton (DFA)
n Straightforward conversion

n Convert the DFA into an efficient scanner
implementation

6

Language & automata theory:
a speedy reminder

n Alphabet: a finite set of symbols
n String: a finite, possibly empty, sequence of symbols

from an alphabet
n Language: a set, often infinite, of strings
n Finite specifications of (possibly infinite) languages:

n Automaton – a recognizer; a machine that accepts all
strings in the language (and rejects all other strings)

n Grammar – a generator; a system for producing all strings in
the language (and no other strings)

n A language may be specified by many different
grammars and automata

n A grammar or automaton specifies only one language

7

Definitions: token vs lexeme

n Token: an "atom of syntax"; set of lexemes
n Ex: int literal, string literal, identifier, keyword-if

n Lexeme: the character string forming a token
n Ex: 17, 42, "Hello", "Goodbye", x, dogbert, if

n A token may have attributes, if the set has
more than a single lexeme
n "int literal" token might have attribute "17" or "42"
n "keyword-if" token probably needs no attributes

8

Regular expressions:
a notation for defining tokens

n Regular expressions (REs)
are defined inductively:

n Base cases
n The empty string (ε)
n A symbol from the alphabet

n Inductive cases
n Choice of two REs: E1| E2

n Sequence of two REs: E1E2

n Kleene closure (zero or more
occurrences) of an RE: E*

n Use parentheses for
grouping

n Whitespace is not
significant

Increasing
precedence

9

Examples

a
a b
(a | b)
(a | b) c
a | b c
a b*
(a | b)(0 | 1)*

10

Notational conveniences:
no additional expressive power

n E+ means one or more occurrences of E

n Ek means k occurrences of E (k a literal constant)

n [E] means 0 or 1 occurrences of E (it’s optional)
n { E} means E*

n not (x) means any character in the alphabet but x

n not (E) means any strings in the alphabet but those
matching E

n E1- E2 means any strings matching E1 except those
matching E2

ra
re

ly
 im

pl
em

en
te

d
(p

ot
en

tia
lly

 e
xp

en
si

ve
)

11

Naming regular expressions:
simplify RE definitions

n Can assign names to regular expressions
n Can use these names in the definition of

another regular expression
n Examples

n l et t er : : = a | b | … | z

n di gi t : : = 0 | 1 | … | 9

n al phanum : : = l et t er | di gi t

n Can eliminate names by macro expansion

n No recursive definitions are allowed! Why?

12

Regular expressions for PL/0
Di gi t : : = 0 | … | 9
Let t er : : = a | … | z | A | … | Z
I nt eger : : = Di gi t +

Al phaNum : : = Let t er | Di gi t
I d : : = Let t er Al phaNum*
Keywor d : : = module | procedure | begin | end | const

| var | if | then | while | do | input
| output | odd | int

Punct : : = ; | : | . | , | (|)
Oper at or : : = := | * | / | + | - | = | <> | <= | < | >= | >
Token : : = I d | I nt eger | Keywor d | Oper at or | Punct
Whi t e : : = <space> | <tab> | <newline>
Pr ogr am : : = (Token | Whi t e) *

13

Generate scanner from
regular expressions?
n This would be ideal: REs as input to a

scanner generator, and a scanner as output
n Indeed, some tools can mostly do this

n But it’s not straightforward to do this
n One reason: there is a lot of non-determinism —

choice — inherent in most regular expressions
n Choice can be implemented using backtracking,

but it’s generally very inefficient

n In any case, these tools go through a process
like the one we’ll look at

14

Next steps

n Convert regular expressions to non-
deterministic finite state automata (NFA)

n Then convert the NFA to deterministic
finite state automata (DFA)

n Then convert DFA into code

15

Finite state automaton
n A finite set of states

n One marked as the initial state
n One or more marked as final states

n A set of transitions from state to state
n Each transition is marked with a symbol from the alphabet or

with ε
n Operate by reading symbols in sequence

n A transition can be taken if it labeled with the current symbol
n An ε-transition can be taken at any point, without consuming

a symbol

n Accept if no more input and in a final state
n Reject if no transition can be taken or if no more input

and not in a final state (DFA case)
16

DFA vs. NFA

n A deterministic finite state automaton (DFA) is
one in which there is no choice of which
transition to take under any condition

n A non-deterministic finite state automaton
(NFA) is one in which there is a choice of
which transition to take in at least one
situation
n "Accept" == some way to reach final state
n "Reject" == all ways fail at end of input

17

1

0

1

0 0

1

Example

18

ε

aa

b a

Example

19

aa

b

a

a

Example

20

Plan of attack

n Convert from regular expressions to
NFAs because there is an easy
construction
n However, NFAs encode choice, and choice

implies backtracking, which is slow

n Convert from NFAs to DFAs, because
there is a well-defined procedure
n And DFAs lay the foundation for an

efficient scanner implementation

21

Exercise

n Consider the language that includes
only those binary strings that have odd
parity

n For this language, define
n the alphabet
n a grammar
n an automaton

22

Converting REs to NFAs:
base cases

ε

x

23

E1E2

εE1 E2

24

E1| E2

ε
E1

E2
ε

ε

ε

25

E*

?

26

RE to NFA

n Those rules are sufficient for
constructing an equivalent NFA from a
regular expression

27

Exercise

n Define a regular expression that
recognizes comments of the form
n / * … * /

n Be careful in defining “…”

n Then convert that regular expression to
an NFA

28

Building lexers from regular
expressions

n Convert the regular expressions into
deterministic finite state automata (DFA)
n Manually

n Mechanically by converting first to non-
deterministic finite state automata (NDFA) and
then into DFA

n Convert DFA into scanner implementation
n By hand into a collection of procedures

n Mechanically into a table-driven parser

29

Why convert to DFAs?

n Because
n they are equivalent in power to NFAs
n they are deterministic, which makes them a

terrific basis for an efficient implementation
of a scanner

30

NFA => DFA
n Basic problem

n NFA can choose among alternative paths
n either ε transitions or
n multiple transitions from a state with the same label

n But a DFA cannot have this kind of choice

n Solution: subset construction
n In the newly constructed DFA, each state

represents a set of states in the NFA,

n Key Idea:
the state of the DFA after reading x1x2…xk
is the set of all states that the NFA might
reach after reading the same input

31

Subset construction algorithm
initial step

n Create start state of new DFA
n Label it with the set of NFA states that can be

reached without consuming any input
n I.e., NFA's start state, or reachable by ε transitions
n Think of it as all possible start states in the NFA, since

there could be more than one, given the ε transitions

n Then "process" this new start state
n Details below

32

Example

1 2
ε

5
a

3 4
b

a a

a | b

Example from
Crafting a Compiler,
Fischer & LeBlanc

33

Example (cont.)

34

Subset construction algorithm
processing a state

n To process a state S in the new DFA with
label {s1,…,sn}

n For each symbol x in the alphabet
n Compute the set T of NFA states reached from

any of the NFA states s1,…,sn by one x transition
followed by any number of ε transitions

n If T is not empty
n If there is not already a DFA state with T as a label,

create one, and add T to the list of states to be
processed

n Add a transition labeled x from S to T

n Repeat until no unprocessed states

35

Subset construction algorithm
defining final states

n After the algorithm terminates
n Mark every DFA state as final if any of

the NFA states in its label is final

36

Subset construction: notes

n It is provable that this works and
produces an equivalent DFA (c.f. CSE 322)

n This activity can be automated
n Question: What can be said about the

number of states in the DFA relative to
the NFA?
n In theory? In practice?

37

Minimizing DFAs

n There is also an algorithm for minimizing the
number of states in a DFA

n Given an arbitrary DFA, one can find a
unique DFA with a minimum number of states
that is equivalent to the original DFA
n Except for a renaming of the states

n Essentially, try to merge states

38

Constructing scanners from
DFAs

n Use a table-driven scanner
n Write disciplined procedures that

encode the DFA
n We’ll talk about both (the first briefly)
n The second approach is used in the

PL/0 compiler
n Because it’s generally easier to handle a

few practical issues (but may be slower?)

39

Approach 1: Table-driven
n Represent the DFA as

an adjacency matrix
n One row per state
n One column per

character in the alphabet
n Entry is state to transition

to

n Mechanically walk the
input, taking appropriate
transitions
n Rules for termination

remain unchanged

{5}

{5}{5}{4,5}

{4,5}{5}{3,4,5}

{3,4,5}{1,2}

ba

40

Approach 2: Procedural
n Define a procedure for

each state in the DFA
n Use conditionals to

check the input
character and then
make the appropriate
transition

n A transition is a call to
the procedure for the
next state

n (Call overhead optimizable)

pr ocedur e { 3, 4, 5} begi n

i f next Char () == ‘ a’

cal l { 5}

el si f next Char () == ‘ b’

cal l { 4, 5}

el se

r ej ect (“ no t r ans i t i on

out of t hi s

st at e”)

end

41

The heart of the PL/0 scanner
it’s not quite as clean (but it’s not bad!)

Token : : = I d |
I nt eger |
Keywor d |
Oper at or |
Punct

n Where’s the DFA?
n How come five kinds of tokens and only three

branches?

i f (i sal pha(Cur r ent Ch)) {

T = Get I dent ()

} el se i f (i sdi gi t (Cur r ent Ch)) {

T = Get I nt ()

} el se {

T = Get Punct () ;

}

42

PL/0’s Get I dent method

n Is PL/0 case-
sensitive?

n What does
Sear chReser ved

return?

Token* Scanner : : Get I dent () {

char i dent [MaxI dLengt h+1] ;

i nt Lengt hOf I d = 0;

whi l e (i sal num(Cur r ent Ch)) {

i dent [Lengt hOf I d] =
t ol ower (Cur r ent Ch) ;

Lengt hOf I d ++;

Get Ch() ;

}

i dent [Lengt hOf I d] = ' \ 0' ;

r et ur n Sear chReser ved(i dent) ;

}

43

PL/0’s Get I nt method
Token* Scanner : : Get I nt () {

i nt i nt eger = 0;
whi l e (i sdi gi t (Cur r ent Ch)) {

i nt eger = 10 * i nt eger + (Cur r ent Ch - ' 0') ;
Get Ch() ;

}
r et ur n new I nt eger Token(i nt eger) ;

}

44

PL/0’s GetPunct method

Token* Scanner : : Get Punct () {

Token* T;

swi t ch (Cur r ent Ch) {

case ' : ' :

Get Ch() ;

i f (CondReadCh(' =')) {

T = new Token(GETS) ;

} el se {

T = new Token(COLON) ;

}

br eak;

case ' <' :

Get Ch() ;

i f (CondReadCh(' =')) {

T = new Token(LEQ) ;

} el se i f (CondReadCh(' >')) {

T = new Token(NEQ) ;

} el se {

T = new Token(LSS) ;

}

br eak;

…

45

A few PL/0 scanner notes
n There is a Scanner class

n There is only one instance of this class
n This is an example of the Singleton design pattern

n The high-level structure we showed has the
scanner scan before the parser parses
n Study the compiler to figure out what really

happens

n Make sure (for this and all other phases) to
read the interface (the . h file) very, very
carefully

46

Language design issues
(lexical)
n Most languages are now free-form

n Layout doesn’t matter
n Use whitespace to separate tokens, if needed
n Alternatives include

n Fortran, Algol68: whitespace is ignored
n Haskell: use layout to imply grouping

n Most languages now have reserved words
n Cannot be used as identifiers
n Alternative: PL/1 has keywords that are treated specially

only in certain contexts, but may be used as identifiers, too

n Most languages separate scanning & parsing
n Alternative: C/C++ type vs ident t ypedef i nt myt ype;

i nt myvar ;
myt ype i , j , k;

47

Classes of languages
n Regular languages can be

specified by
n regular expressions
n regular grammars
n finite-state automata (FSA)

n Context-free languages (CFL)
can be specified by
n context-free grammars (CFG)
n push-down automata (PDA)

n Turing-computable languages
can be specified by
n arbitrary grammars
n Turing machines

Strict inclusion of these
classes of languages

regular

context-free

Turing-computable

languages

languages

languages

all languages

48

Objectives: next lectures

n Understand the theory and practice of
parsing

n Describe the underlying language
theory of parsing (CFGs, etc.)

n Understand and be able to perform top-
down parsing

n Understand bottom-up parsing

