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Prototype compiler structure
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Optimization

n Identify inefficiencies in target or 
intermediate code

n Replace with equivalent but “better” 
sequences

n “Optimize” is a lie.  
“Usually improve” is more honest.

4

Example
x : = a[ i ]  + b[ 2] ;

c[ i ]  : = x – 5;

t1  := *(fp + ioffset) // i
t2  := t1 * 4
t3  := fp + t2
t4  := *(t3 + aoffset) // a[i]
t5  := 2
t6  := t5 * 4
t7  := fp + t6
t8  := *(t7 + boffset) // b[2]
t9  := t4 + t8
*(fp + xoffset) := t9 // x := …
t10 := *(fp + xoffset) // x
t11 := 5
t12 := t10 – t11
t13 := *(fp + ioffset) // i
t14 := t13 * 4
t15 := fp + t14
*(t15 + coffset) := t12 // c[i] := …
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Kinds of optimizations

n Scope of analysis is central to what
optimizations can be performed. A larger 
scope may expose better optimizations, but is 
more complex
n Peephole: look at adjacent instructions

n Local: look at straight-line sequences of 
instructions

n Global (intraprocedural): look at whole procedure
n Interprocedural: look across proceduresIn
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Peephole

n After codegen, look at a few adjacent 
instructions
n Try to replace them with something better

n If you have
sw $8, 12( $f p)
l w $12, 12( $f p)

n You can replace it with
sw $8, 12( $f p)
mv $12, $8
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Peephole examples: 68k

If you have  

sub sp, 4, sp
mov r 1, 0( sp)

mov 12( f p) , r 1
add r 1, 1, r 1
mov r 1, 12( f p)

Replace it with

mov r 1, - ( sp)

i nc 12( f p)
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Peephole optimization of jumps

n Eliminate 
n Jumps to jumps
n Conditional 

branch over 
unconditional 
branch

n “Adjacent 
instructions” 
means 
“adjacent in 
control flow”

i f  a < b t hen
i f  c < d t hen

# do not hi ng
el se

st mt 1;
end;

el se
st mt 2;

end;

i f  ( a≥b) got o 1
i f  ( c≥d) got o 2
#do not hi ng
got o 3

2: st mt 1
3:

got o 4
1: st mt 2
4:
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How to do peephole opts

n Could be done at IR and/or target level
n Catalog of specific code rewrite 

templates
n Scan code with moving window looking 

for matches
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Peephole summary

n You could consider peephole 
optimization as increasing the 
sophistication of instruction selection

n Relatively easy to do
n Relatively easy to extend
n Relatively easy to ensure correctness
n Relatively high payoff
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Algebraic simplifications
by peephole or codegen

n “constant folding” and “strength 
reduction” are common names for this 
kind of optimization
n z : = 3 + 4

n z : = x + 0
z : = x *  1

n z : = x *  2
z : = x *  8
z : = x /  8

n f l oat  x, y;
z : = ( x + y)  – y;
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n Analysis and optimizations within a basic 
block

A basic block is a straight-line sequence 
of  statements with no control flow into or 
out of the middle of the sequence

n Local optimizations are more powerful than 
peephole (e.g., block may be longer than peephole window)

n Not too hard to implement
n Can be machine-independent, if done on 

intermediate code

Local optimization
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Local constant propagation
(aka "constant folding")

n If a constant is assigned to a variable, 
replace downstream uses of the 
variable with the constant

n If all operands are const, replace with 
result

n May enable further constant folding
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Example

const  count  :  i nt  = 10;

…

x : = count  *  5;

y : = x ^  3;

t 1  : = 10

t 2  : = 5

t 3  : = t 1 *  t 2

x   : = t 3

t 4  : = x

t 5  : = 3

t 6  : = exp( t 4, t 5)

y   : = t 6

15

Local dead assignment elimination

n If the left hand side of an assignment is 
never read again before being 
overwritten, then remove the 
assignment

n This sometimes happens while cleaning 
up from other optimizations (as with 
many of the optimizations we consider)
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Example

const  count  :  i nt  = 10;

…

x : = count  *  5;

y : = x ^  3;

x : = i nput ;

x  : = 50
t 6 : = exp( 50, 3)
y  : = t 6
x  : = i nput ( )

Intermediate code after 
constant propagation
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Common subexpression elimination

n Avoid repeating the same calculation
n Requires keeping track of available 

expressions
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CSE example:  … a[ i ]  + b[ i ] …

t 1  : = * ( f p + i of f set )

t 2  : = t 1 *  4

t 3  : = f p + t 2

t 4  : = * ( t 3 + aof f set )

t 5  : = * ( f p + i of f set )

t 6  : = t 5 *  4

t 7  : = f p + t 6

t 8  : = * ( t 7 + bof f set )

t 9  : = t 4 + t 8
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Next
n Intraprocedural optimizations

n Code motion
n Loop induction variable elimination
n Global register allocation

n Interprocedural optimizations
n Inlining

n After that…how to implement these 
optimizations

n ∃∃∃∃ other kinds of optimizations, beyond the 
scope of this class, e.g. dynamic compilation
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Intraprocedural optimizations

n Enlarge scope of analysis to entire procedure
n Provides more opportunities for optimization
n Have to deal with branches, merges and loops

n Can do constant propagation, common 
subexpression elimination, etc. at this level

n Can do new things, too, like 
loop optimizations

n Optimizing compilers usually work at this level
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Code motion

n Goal: move loop-invariant calculations 
out of loops -- hoisting

n Can do this at the source or 
intermediate code level

f or  i  : = 1 t o 10 do
a[ i ]  : = a[ i ]  + b[ j ] ;
z  : = z + 10000

end
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At intermediate code level
f or  i  : = 1 t o 10 
do

a[ i ]  : = b[ j ] ;
end

* ( f p+i of f set )  : = 1
_l 0:

i f  * ( f p+i of f set )  > 10 got o _l 1
t 1 : = * ( f p+j of f set )
t 2 : = t 1* 4
t 3 : = f p+t 2
t 4 : = * ( t 3+bof f set )
t 5 : = * ( f p+i of f set )
t 6 : = t 5* 4
t 7 : = f p+t 6
* ( t 7+aof f set )  : = t 4
t 8 : = * ( f p+i of f set )
t 9 : = t 8+1
* ( f p+i of f set )  : = t 9
got o _l 0

_l 1:  
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Loop induction variable elimination

n For-loop index is an induction variable
n Incremented each time through the loop
n Offsets, pointers calculated from it

n If used only to index arrays, can rewrite with 
pointers
n Compute initial offsets, pointers before loop
n Increment offsets, pointers each time around loop

n No expensive scaling in the loop
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Example
f or  i  : = 1 t o 10 do

a[ i ]  : = a[ i ]  + x;
end

f or  p : = &a[ 1]  t o &a[ 10]  do
* p : = * p + x ;

end
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Global register allocation
n Try to allocate local 

variables to registers
n If two locals don’t 

overlap, then give 
them the same 
register

n Try to allocate most 
frequently used 
variables to registers 
first

pr oc f ( n: i nt , x: i nt ) : i nt ;
var  sum:  i nt ,  i : i nt ;

begi n
sum : = x;
f or  i  : = 1 t o n do

sum : = sum + i ;
end
r et ur n sum;

end f ;
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Register allocation by coloring

n As before, IR gen as if infinite regs avail
n Build interference graph:

x : = a+5;

y : = b* 2;

z : = x/ 3;
a : = y- 2;

n Colorable with few colors (regs)?
nNP-hard, but …

n If not, pick a node & generate spill code

x z

y
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Interprocedural optimizations
n What happens if we expand the scope of the 

optimizer to include procedures calling each 
other
n In the broadest scope, this is optimization of the 

program as a whole

n We can do local, intraprocedural 
optimizations at a bigger scope
n For example, constant propagation

n But we can also do entirely new 
optimizations, such as inlining
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Interprocedural opt: Issues
pr ocedur e P( )  {

x:  i nt ;

x  : = 10;

Q(            ) ;

x : = x+1;

i f  x  == 11 t hen 
…

n Q()

n Q(x by value)
n Q(x by reference)

n Q(const x by reference)

n Q(), but Q declared in P
n …
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Inlining
Replace procedure call with the body of the called 

procedure

const  pi : r eal  : = 3. 14159;

pr oc ar ea( r ad: i nt ) : i nt ;

begi n

r et ur n pi * ( r ad^2) ;

end;

…

r  : = 5;

…

out put  : = ar ea( r ) ;

const  pi : r eal  : = 3. 14159;

pr oc ar ea( r ad: i nt ) : i nt ;

begi n

r et ur n pi * ( r ad^2) ;

end;

…

r  : = 5;

…

out put  : = pi * ( r ^2) ;
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Questions about inlining:
few answers

n How to decide where the payoff is 
sufficient to inline?
n The real decision depends on dynamic 

information about frequency of calls

n In most cases, inlining causes the code 
size to increase; when is this 
acceptable?

n Others?
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Optimization and debugging
n Debugging optimized code is often hard
n For example, what if:

n Source code statements have been reordered?
n Source code variables have been eliminated?
n Code is inlined?

n In general, the more optimization there is, the 
more complex the back-mapping is from the 
target code to the source code … which can 
confuse a programmer
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Summary of optimization
n Larger scope of analysis yields better results

n Most of today’s optimizing compilers work at the 
intraprocedural level, with some doing some work at the 
interprocedural level

n Optimizations are usually organized as collections of 
passes

n The presence of optimizations may make other parts 
of the compiler (e.g., code gen) easier to write
n E.g., use a simple instruction selection algorithm, knowing 

that the optimizer can, in essence, act to improve these 
instruction selections
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Implementing intraprocedural 
optimizations

n The heart of implementing optimizations 
is the definition and construction of a 
convenient representation

n We’ll look a bit more closely at two 
common and useful representations
n The control flow graph (CFG)
n The data flow graph (DFG)
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CFG

n Nodes are intermediate language statements
n Or whole basic blocks

n Edges represent control flow
n Node with multiple successors is a 

branch/switch
n Node with multiple predecessors is a merge
n Loop in a graph represents a loop in the 

program
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x > y

x := x+1

Yes No

x > 0

output := x

Yes No

y := input

x := input

Example
whi l e x > y  do

x :  = x + 1;
end;

i f  x > 0 t hen
out put  : = x;

end;
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DFG: def/use chains

n Nodes are def(initions) and uses
n Edge from def to use
n A def can reach multiple uses
n A use can have multiple reaching defs
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y := inputx := input

x > y

x := x + 1x > 0

output := x

Example
x : = i nput ;
y : = i nput ;

whi l e x > y  do
x :  = x + 1;

end;

i f  x > 0 t hen
out put  : = x;

end;
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Example program
CFG and DFG in groups

x : = 3;
y : = x *  x;
i f  y > 10 t hen

x : = 5;
y : = y  + 1;

el se
x : = 6;
y : = x  + 4;

end;
w : = y /  3;
whi l e y > 0 do

z : = w *  w;
x : = x  – z;
y : = y  – 1;

end;
out put   : = x;
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Analysis and transformation
n Each optimization is one or more analyses followed 

by a transformation
n Analyze CFG and/or DFG by propagating information 

forward or backward along CFG and/or DFG edges
n Merges in graph require combining information
n Loops in graph require iterative approximation

n Perform improving transformations based on 
information computed
n Have to wait until any iterative approximation has converged

n Analysis must be conservative, so that 
transformations preserve program behavior
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A simple analysis
n Let’s start with a simple 

analysis that can help 
us determine which 
assignments can be 
eliminated from a basic 
block

n The example is 
unreasonable as 
source, but perhaps not 
as intermediate code

pr oc f oo( j ,  k,  
l : i nt ) : i nt
begi n

i nt  a,  b,  c,  n,  x;
a : = 17 *  j ;
b : = k  *  k;
c : = a + b;
a : = k  *  7;
r et ur n c;

end
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Liveness analysis
n This analysis is a form of liveness analysis

n It can help identify assignments to remove
n It can also form the basis for memory and register 

optimizations

n The goal is to identify which variables are live and 
which are dead at given program points

n The analysis is usually performed backwards
n When a variable is used, it becomes lives in that statement 

and code before it
n When a variable is assigned to, it becomes dead for all code 

before it

n Note the relationship to def-use, as we saw in the 
data flow graph
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Work backwards
Live Dead

pr oc f oo( j ,  k,  l : i nt ) : i nt
begi n

i nt a,  b,  c,  n,  x;
a : = 17 *  j ; ? ?
b : = k *  k; ? ?
c : = a + b; {k,l,a,b,c} {j,n,x}
a : = k *  l ; {k,l,c} {j,n,x,a,b}
r et ur n c ; {c} {j,k,l,n,

end x,a,b}
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So?

n This analysis shows we can eliminate the last 
assignment to a, which is no surprise

n Technically, assignments to a dead variable 
can be removed
n The value isn’t needed below, so why do the 

assignment?

n Furthermore, you could show for this example 
that the declarations for n and x aren’t 
needed, since n nor x is ever live
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Then…
n After eliminating the last assignment (and 

these two declarations), you can redo the 
analysis

n This analysis now shows that l is dead 
everywhere in the block, and it can be 
removed as a parameter

n The stack can be reduced because of this
n And the caller could, in principle, be further 

optimized
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Well, that was easy

n But that’s for basic blocks
n Once we have control flow, it’s much harder 

to do because we don’t know the order in 
which the basic blocks will execute

n We need to ensure (for optimization) that 
every possible path is accounted for, since 
we must make conservative assumptions to 
guarantee that the optimized code always 
works


