
a

1

CSE401: Optimization

Larry Snyder
Autumn 2003

Slides by Chambers, Eggers, Notkin, Ruzzo, Snyder and others
© L. Snyder and UW CSE, 1994-2003

2

������
�����	

Stream
of characters

Sequence
of tokens

Lexical analysis

Abstract Syntax
Tree (AST)

Syntactic analysis

AST+ and
symbol table

Semantic analysis

AST++ and
symbol table

Storage
layout

Intermediate code
generation

Intermediate
representation

Optimization

Intermediate
representation

Target code generation

Executable
code

�	����
�����	

Prototype compiler structure

3

Optimization

n Identify inefficiencies in target or
intermediate code

n Replace with equivalent but “better”
sequences

n “Optimize” is a lie.
“Usually improve” is more honest.

4

Example
x : = a[i] + b[2] ;

c[i] : = x – 5;

t1 := *(fp + ioffset) // i
t2 := t1 * 4
t3 := fp + t2
t4 := *(t3 + aoffset) // a[i]
t5 := 2
t6 := t5 * 4
t7 := fp + t6
t8 := *(t7 + boffset) // b[2]
t9 := t4 + t8
*(fp + xoffset) := t9 // x := …
t10 := *(fp + xoffset) // x
t11 := 5
t12 := t10 – t11
t13 := *(fp + ioffset) // i
t14 := t13 * 4
t15 := fp + t14
*(t15 + coffset) := t12 // c[i] := …

5

Kinds of optimizations

n Scope of analysis is central to what
optimizations can be performed. A larger
scope may expose better optimizations, but is
more complex
n Peephole: look at adjacent instructions

n Local: look at straight-line sequences of
instructions

n Global (intraprocedural): look at whole procedure
n Interprocedural: look across proceduresIn

cr
ea

si
ng

 s
co

pe
,

op
po

rt
un

ity
, a

nd

co
m

pl
ex

ity

6

Peephole

n After codegen, look at a few adjacent
instructions
n Try to replace them with something better

n If you have
sw $8, 12($f p)
l w $12, 12($f p)

n You can replace it with
sw $8, 12($f p)
mv $12, $8

a

2

7

Peephole examples: 68k

If you have

sub sp, 4, sp
mov r 1, 0(sp)

mov 12(f p) , r 1
add r 1, 1, r 1
mov r 1, 12(f p)

Replace it with

mov r 1, - (sp)

i nc 12(f p)

8

Peephole optimization of jumps

n Eliminate
n Jumps to jumps
n Conditional

branch over
unconditional
branch

n “Adjacent
instructions”
means
“adjacent in
control flow”

i f a < b t hen
i f c < d t hen

do not hi ng
el se

st mt 1;
end;

el se
st mt 2;

end;

i f (a≥b) got o 1
i f (c≥d) got o 2
#do not hi ng
got o 3

2: st mt 1
3:

got o 4
1: st mt 2
4:

9

How to do peephole opts

n Could be done at IR and/or target level
n Catalog of specific code rewrite

templates
n Scan code with moving window looking

for matches

10

Peephole summary

n You could consider peephole
optimization as increasing the
sophistication of instruction selection

n Relatively easy to do
n Relatively easy to extend
n Relatively easy to ensure correctness
n Relatively high payoff

11

Algebraic simplifications
by peephole or codegen

n “constant folding” and “strength
reduction” are common names for this
kind of optimization
n z : = 3 + 4

n z : = x + 0
z : = x * 1

n z : = x * 2
z : = x * 8
z : = x / 8

n f l oat x, y;
z : = (x + y) – y;

12

n Analysis and optimizations within a basic
block

A basic block is a straight-line sequence
of statements with no control flow into or
out of the middle of the sequence

n Local optimizations are more powerful than
peephole (e.g., block may be longer than peephole window)

n Not too hard to implement
n Can be machine-independent, if done on

intermediate code

Local optimization

a

3

13

Local constant propagation
(aka "constant folding")

n If a constant is assigned to a variable,
replace downstream uses of the
variable with the constant

n If all operands are const, replace with
result

n May enable further constant folding

14

Example

const count : i nt = 10;

…

x : = count * 5;

y : = x ^ 3;

t 1 : = 10

t 2 : = 5

t 3 : = t 1 * t 2

x : = t 3

t 4 : = x

t 5 : = 3

t 6 : = exp(t 4, t 5)

y : = t 6

15

Local dead assignment elimination

n If the left hand side of an assignment is
never read again before being
overwritten, then remove the
assignment

n This sometimes happens while cleaning
up from other optimizations (as with
many of the optimizations we consider)

16

Example

const count : i nt = 10;

…

x : = count * 5;

y : = x ^ 3;

x : = i nput ;

x : = 50
t 6 : = exp(50, 3)
y : = t 6
x : = i nput ()

Intermediate code after
constant propagation

17

Common subexpression elimination

n Avoid repeating the same calculation
n Requires keeping track of available

expressions

18

CSE example: … a[i] + b[i] …

t 1 : = * (f p + i of f set)

t 2 : = t 1 * 4

t 3 : = f p + t 2

t 4 : = * (t 3 + aof f set)

t 5 : = * (f p + i of f set)

t 6 : = t 5 * 4

t 7 : = f p + t 6

t 8 : = * (t 7 + bof f set)

t 9 : = t 4 + t 8

a

4

19

Next
n Intraprocedural optimizations

n Code motion
n Loop induction variable elimination
n Global register allocation

n Interprocedural optimizations
n Inlining

n After that…how to implement these
optimizations

n ∃∃∃∃ other kinds of optimizations, beyond the
scope of this class, e.g. dynamic compilation

20

Intraprocedural optimizations

n Enlarge scope of analysis to entire procedure
n Provides more opportunities for optimization
n Have to deal with branches, merges and loops

n Can do constant propagation, common
subexpression elimination, etc. at this level

n Can do new things, too, like
loop optimizations

n Optimizing compilers usually work at this level

21

Code motion

n Goal: move loop-invariant calculations
out of loops -- hoisting

n Can do this at the source or
intermediate code level

f or i : = 1 t o 10 do
a[i] : = a[i] + b[j] ;
z : = z + 10000

end

22

At intermediate code level
f or i : = 1 t o 10
do

a[i] : = b[j] ;
end

* (f p+i of f set) : = 1
_l 0:

i f * (f p+i of f set) > 10 got o _l 1
t 1 : = * (f p+j of f set)
t 2 : = t 1* 4
t 3 : = f p+t 2
t 4 : = * (t 3+bof f set)
t 5 : = * (f p+i of f set)
t 6 : = t 5* 4
t 7 : = f p+t 6
* (t 7+aof f set) : = t 4
t 8 : = * (f p+i of f set)
t 9 : = t 8+1
* (f p+i of f set) : = t 9
got o _l 0

_l 1:

23

Loop induction variable elimination

n For-loop index is an induction variable
n Incremented each time through the loop
n Offsets, pointers calculated from it

n If used only to index arrays, can rewrite with
pointers
n Compute initial offsets, pointers before loop
n Increment offsets, pointers each time around loop

n No expensive scaling in the loop

24

Example
f or i : = 1 t o 10 do

a[i] : = a[i] + x;
end

f or p : = &a[1] t o &a[10] do
* p : = * p + x ;

end

a

5

25

Global register allocation
n Try to allocate local

variables to registers
n If two locals don’t

overlap, then give
them the same
register

n Try to allocate most
frequently used
variables to registers
first

pr oc f (n: i nt , x: i nt) : i nt ;
var sum: i nt , i : i nt ;

begi n
sum : = x;
f or i : = 1 t o n do

sum : = sum + i ;
end
r et ur n sum;

end f ;

26

Register allocation by coloring

n As before, IR gen as if infinite regs avail
n Build interference graph:

x : = a+5;

y : = b* 2;

z : = x/ 3;
a : = y- 2;

n Colorable with few colors (regs)?
nNP-hard, but …

n If not, pick a node & generate spill code

x z

y

27

Interprocedural optimizations
n What happens if we expand the scope of the

optimizer to include procedures calling each
other
n In the broadest scope, this is optimization of the

program as a whole

n We can do local, intraprocedural
optimizations at a bigger scope
n For example, constant propagation

n But we can also do entirely new
optimizations, such as inlining

28

Interprocedural opt: Issues
pr ocedur e P() {

x: i nt ;

x : = 10;

Q() ;

x : = x+1;

i f x == 11 t hen
…

n Q()

n Q(x by value)
n Q(x by reference)

n Q(const x by reference)

n Q(), but Q declared in P
n …

29

Inlining
Replace procedure call with the body of the called

procedure

const pi : r eal : = 3. 14159;

pr oc ar ea(r ad: i nt) : i nt ;

begi n

r et ur n pi * (r ad^2) ;

end;

…

r : = 5;

…

out put : = ar ea(r) ;

const pi : r eal : = 3. 14159;

pr oc ar ea(r ad: i nt) : i nt ;

begi n

r et ur n pi * (r ad^2) ;

end;

…

r : = 5;

…

out put : = pi * (r ^2) ;

30

Questions about inlining:
few answers

n How to decide where the payoff is
sufficient to inline?
n The real decision depends on dynamic

information about frequency of calls

n In most cases, inlining causes the code
size to increase; when is this
acceptable?

n Others?

a

6

31

Optimization and debugging
n Debugging optimized code is often hard
n For example, what if:

n Source code statements have been reordered?
n Source code variables have been eliminated?
n Code is inlined?

n In general, the more optimization there is, the
more complex the back-mapping is from the
target code to the source code … which can
confuse a programmer

32

Summary of optimization
n Larger scope of analysis yields better results

n Most of today’s optimizing compilers work at the
intraprocedural level, with some doing some work at the
interprocedural level

n Optimizations are usually organized as collections of
passes

n The presence of optimizations may make other parts
of the compiler (e.g., code gen) easier to write
n E.g., use a simple instruction selection algorithm, knowing

that the optimizer can, in essence, act to improve these
instruction selections

33

Implementing intraprocedural
optimizations

n The heart of implementing optimizations
is the definition and construction of a
convenient representation

n We’ll look a bit more closely at two
common and useful representations
n The control flow graph (CFG)
n The data flow graph (DFG)

34

CFG

n Nodes are intermediate language statements
n Or whole basic blocks

n Edges represent control flow
n Node with multiple successors is a

branch/switch
n Node with multiple predecessors is a merge
n Loop in a graph represents a loop in the

program

35

x > y

x := x+1

Yes No

x > 0

output := x

Yes No

y := input

x := input

Example
whi l e x > y do

x : = x + 1;
end;

i f x > 0 t hen
out put : = x;

end;

36

DFG: def/use chains

n Nodes are def(initions) and uses
n Edge from def to use
n A def can reach multiple uses
n A use can have multiple reaching defs

a

7

37

y := inputx := input

x > y

x := x + 1x > 0

output := x

Example
x : = i nput ;
y : = i nput ;

whi l e x > y do
x : = x + 1;

end;

i f x > 0 t hen
out put : = x;

end;

38

Example program
CFG and DFG in groups

x : = 3;
y : = x * x;
i f y > 10 t hen

x : = 5;
y : = y + 1;

el se
x : = 6;
y : = x + 4;

end;
w : = y / 3;
whi l e y > 0 do

z : = w * w;
x : = x – z;
y : = y – 1;

end;
out put : = x;

39

Analysis and transformation
n Each optimization is one or more analyses followed

by a transformation
n Analyze CFG and/or DFG by propagating information

forward or backward along CFG and/or DFG edges
n Merges in graph require combining information
n Loops in graph require iterative approximation

n Perform improving transformations based on
information computed
n Have to wait until any iterative approximation has converged

n Analysis must be conservative, so that
transformations preserve program behavior

40

A simple analysis
n Let’s start with a simple

analysis that can help
us determine which
assignments can be
eliminated from a basic
block

n The example is
unreasonable as
source, but perhaps not
as intermediate code

pr oc f oo(j , k,
l : i nt) : i nt
begi n

i nt a, b, c, n, x;
a : = 17 * j ;
b : = k * k;
c : = a + b;
a : = k * 7;
r et ur n c;

end

41

Liveness analysis
n This analysis is a form of liveness analysis

n It can help identify assignments to remove
n It can also form the basis for memory and register

optimizations

n The goal is to identify which variables are live and
which are dead at given program points

n The analysis is usually performed backwards
n When a variable is used, it becomes lives in that statement

and code before it
n When a variable is assigned to, it becomes dead for all code

before it

n Note the relationship to def-use, as we saw in the
data flow graph

42

Work backwards
Live Dead

pr oc f oo(j , k, l : i nt) : i nt
begi n

i nt a, b, c, n, x;
a : = 17 * j ; ? ?
b : = k * k; ? ?
c : = a + b; {k,l,a,b,c} {j,n,x}
a : = k * l ; {k,l,c} {j,n,x,a,b}
r et ur n c ; {c} {j,k,l,n,

end x,a,b}

a

8

43

So?

n This analysis shows we can eliminate the last
assignment to a, which is no surprise

n Technically, assignments to a dead variable
can be removed
n The value isn’t needed below, so why do the

assignment?

n Furthermore, you could show for this example
that the declarations for n and x aren’t
needed, since n nor x is ever live

44

Then…
n After eliminating the last assignment (and

these two declarations), you can redo the
analysis

n This analysis now shows that l is dead
everywhere in the block, and it can be
removed as a parameter

n The stack can be reduced because of this
n And the caller could, in principle, be further

optimized

45

Well, that was easy

n But that’s for basic blocks
n Once we have control flow, it’s much harder

to do because we don’t know the order in
which the basic blocks will execute

n We need to ensure (for optimization) that
every possible path is accounted for, since
we must make conservative assumptions to
guarantee that the optimized code always
works

