

Overall approach to scanning

- Define language tokens using regular expressions - Natural representation for tokens
- But difficult to produce a scanner from REs
- Convert the regular expressions into a nondeterministic finite state automaton (NFA)
- Straightforward conversion
- Can produce a scanner from NFA, but an inefficient one
- Convert the NFA into a deterministic finite state automaton (DFA)
- Straightforward conversion
- Convert the DFA into an efficient scanner implementation

Notational conveniences:
no additional expressive power

- E^{+}means one or more occurrences of E
- E^{k} means k occurrences of E (k a literal constant)
- [E] means 0 or 1 occurrences of E (it's optional)
- $\{\mathrm{E}\}$ means E^{*}
 matching E
- $E_{1}-E_{2}$ means any strings matching E_{1} except those matching E_{2}

Naming regular expressions:
simplify RE definitions

- Can assign names to regular expressions
- Can use these names in the definition of another regular expression
- Examples
- letter ::= a | b | ... | z
- digit ::= 0 | 1 | ... | 9
- alphanum ::= letter | digit
- Can eliminate names by macro expansion
- No recursive definitions are allowed! Why?

Regular expressions for PL/0

```
Digit ::= 0 | ... | 9
Letter ::= a | ... | z | A | ... | z
Integer ::= Digit+
AlphaNum ::= Letter | Digit
Id ::= Letter AlphaNum*
ld
            | var | if | then | while | do | input
            | output | odd | int
Punct ::= ; | : | . | , | ( | )
Operator ::= := | * | | | + | - | = | <> | <= | < | >= | >
Token ::= Id | Integer | Keyword | Operator | Punct
White ::= <space> | <tab> | <newline>
Program ::= (Token | White)*
```


Finite state automaton

- A finite set of states
- One marked as the initial state
- One or more marked as final states
- A set of transitions from state to state
- Each transition is marked with a symbol from the alphabet or with ε
- Operate by reading symbols in sequence
- A transition can be taken if it labeled with the current symbol
- An ε-transition can be taken at any point, without consuming a symbol
- Accept if no more input and in a final state
- Reject if no transition can be taken or if no more input and not in a final state (DFA case)

15

Plan of attack

- Convert from regular expressions to NFAs because there is an easy construction
- However, NFAs encode choice, and choice implies backtracking, which is slow
- Convert from NFAs to DFAs, because there is a well-defined procedure
- And DFAs lay the foundation for an efficient scanner implementation

RE to NFA

- Those rules are sufficient for constructing an equivalent NFA from a regular expression

Why convert to DFAs?

- Because

- they are equivalent in power to NFAs
- they are deterministic, which makes them a terrific basis for an efficient implementation of a scanner

Building lexers from regular

 expressions- Convert the regular expressions into deterministic finite state automata (DFA)
- Manually
- Mechanically converting first to non-deterministic finite automata (NFA) and then into DFA
- Convert DFA into scanner implementation
- By hand into a collection of procedures
- Mechanically into a table-driven lexer

Subset construction algorithm defining final states

- After the algorithm terminates
- Mark every DFA state as final if any of the NFA states in its label is final

Subset construction algorithm processing a state

- To process a state S in the new DFA with label $\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$
- For each symbol x in the alphabet
- Compute the set T of NFA states reached from any of the NFA states $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$ by one x transition followed by any number of ε transitions
- If T is not empty
- If there is not already a DFA state with T as a label, create one, and add T to the list of states to be processed
- Add a transition labeled x from S to T
- Repeat until no unprocessed states

Minimizing DFAs

- There is also an algorithm for minimizing the number of states in a DFA
- Given an arbitrary DFA, one can find a unique DFA with a minimum number of states that is equivalent to the original DFA
- Except for a renaming of the states
- Essentially, try to merge states

Constructing scanners from
DFAs

- Use a table-driven scanner
- Write disciplined procedures that encode the DFA
- We'll talk about both (the first briefly)
- The second approach is used in the PL/O compiler
- Because it's generally easier to handle a few practical issues (but may be slower?)


```
if (isalpha(CurrentCh)) {
    T = GetIdent()
    } else if (isdigit(CurrentCh)) {
    T = GetInt()
} else
    T = GetPunct()
}
```

- Where's the DFA?
- How come five kinds of tokens and only three branches?

PL/O's GetPunct method

Objectives: next lectures

- Understand the theory and practice of parsing
- Describe the underlying language theory of parsing (CFGs, etc.)
- Understand and be able to perform topdown parsing
- Understand bottom-up parsing

