
ZPL

• It’s like programming languages you know 
• Imperative statements, arithmetic/logical expressions...
• Declarations … typed about as strongly as C
• The usual control structures, procedures, I/O, ...
• A syntax people complain about. Of course!

• It’s like nothing you’ve ever programmed...
• Many new features... regions, flooding, remap, etc.

ZPL’s Goals: Run fast (performance) everywhere (port ability) 
with minimal programming effort (convenience)

ZPL’s Goals: Run fast ( performance ) everywhere ( portability ) 
with minimal programming effort ( convenience )



ZPL ...
• Is an array language -- whole arrays are 

manipulated with primitive operations
• Requires new thinking strategies --

• Forget one-operation-at-a-time scalar programming
• Think of the computation globally -- make the global logic 

work efficiently and leave the details to the compiler

• Is parallel, but there are no parallel constructs 
in the language; the compiler...

• Finds all concurrency
• Performs all interprocessor communication
• Implements all necessary synchronization (almost none)
• Performs extensive parallel and scalar optimizations



ZPL Basics ...
ZPL has the usual stuff

– Datatypes:  boolean , float , double , quad , 
complex , signed and unsigned integers: sbyte , 
ubyte , integer , uinteger , char , …

– Operators: 
• Unary: +, -, !

• Binary: +, -, *, /, ^, %, &, |

• Relational: <, <=, =, !=, >=, >=

• Bit Operations: bnot(), band(), bor(), bxor(), bsl(), bsr()

• Assignments: :=, +=, -=, *=, /=, %=, &=, |=

– Control Structures: if-then-[elsif]-else, repeat-until, 
while-do, for-do, exit, return, continue, halt, begin-end



ZPL Basics (continued)
• White space is ignored

• All statements are terminated by semicolon (;)
• Comments are

-- to the end of the line
/*   */ all text within pairs including newlines

• All variables must be declared using var

• Names are case sensitive 

• Programs begin with  program <name>;

the procedure with <name> is the entry point

• Statements execute sequentially



To Guide The Compiler ...

ZPL provides high level mechanisms to express 
computation with a minimum of serialization

• New concepts are needed
– Regions 
– Directions
– Global and partial reductions
– Many others

• Best introduced by example …
• Conway’s Game of Life
1) Survive with 2 or 3 neighbors
2) Birth with exactly 3 neighbors

Goal: Focus on 
“what,” not “how”
Goal: Focus on 
“what,” not “how”

�

�



A Global Solution

• How to represent the world (TW): Array of bits, 
1=organism, 0=empty; toroidal

• Decisions must be based on how many 
neighbors each position has, so must 
compute neighbor count (NN) for whole array

• Given array of neighbor counts, apply the 
rules to create next generation

• Repeat until no organisms remain--0 array



Expressing the Global Rules Globally

Conway’s Life: The World is bits
[R] repeat

NN := TW@^NW + TW@^N + TW@^NE
+ TW@^W +                    TW@^E
+ TW@^SW + TW@^S + TW@^SE;

TW := (TW & NN = 2) | (NN = 3);
until ! (|<< TW);

Add up 
neighbor bits

Add up 
neighbor bits

Apply rules 
to live by

Apply rules 
to live by

“Or” bits in world 
to see if any alive

“Or” bits in world 
to see if any alive



Expressing the Global Rules Globally

Conway’s Life: The World is bits
[R] repeat

NN := TW@^NW + TW@^N + TW@^NE
+ TW@^W +                    TW@^E
+ TW@^SW + TW@^S + TW@^SE;

TW := (TW & NN = 2) | (NN = 3);
until ! (|<< TW);

Add up 
neighbor bits

Add up 
neighbor bits

Apply rules 
to live by

Apply rules 
to live by

“Or” bits in world 
to see if any alive

“Or” bits in world 
to see if any alive

Cartoon of counting neighbors: Array of NW neighbors+
array of north neighbors+array of NE neighbors+...

Edges wrap around �

:= + + + + + + +



Game of Life … the Program
program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 

direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1];  
W = [ 0,-1];               E = [ 0, 1]; 

SW = [ 1,-1]; S = [ 1, 0]; SE = [ 1, 1];

var NN : [R] ubyte; TW : [R] boolean;

procedure Life();
[R] begin

/* Read in the data */

repeat
NN :=  TW@^NW + TW@^N  + TW@^NE

+ TW@^W           + TW@^E 
+ TW@^SW + TW@^S  + TW@^SE;

TW := (NN=2 & TW) | (NN=3);
until ! |<<TW;

end;

Declarations are key to 
setting up an effective context

Declarations are key to 
setting up an effective context



Declaration Basics

• config: define default vals
but revise on command line

• region … define index set
it’s like an array w/o data

• direction … define vector
pointing in index space

• regions used for two purposes … declarations and 
controlling computation

program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 

direction NW = [-1,-1]; N = …
W = [ 0,-1];    

SW = [ 1,-1]; S = …

var NN : [R] ubyte; TW : …

procedure Life();
[R] begin

/* Read in the data

program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 

direction NW = [-1,-1]; N = …
W = [ 0,-1];    

SW = [ 1,-1]; S = …

var NN : [R] ubyte; TW : …

procedure Life();
[R] begin

/* Read in the data



Regions, A Key ZPL Idea
• Regions are index sets

• Any number of dimensions, any bounds
• region V = [1..n];
• region R = [1..m, 1..m]; BigR = [0..m+1,0..m+1];
• region Left = [1..m, 1];
• region Odds = [1..n by 2];

• Short names are preferred--regions are used 
everywhere--and capitalization is a coding 
convention

• Naming regions is recommended but literals 
are OK 



Using Regions to Declare Arrays  
• Regions are used to declare arrays … it’s like 

adding data to the indices
• Capitals are used by convention to separate 

arrays from scalars

• Named or literal regions are OK
var A, B, C : [R] double;
var Seq : [V] boolean;
var Huge : [0..2^n, -5..5] float;

• Regions are used once; no array has more 
than one region component

• Regions are a source of parallelism…



Regions Control Computation
• Statements containing arrays need a region to 

specify which items participate
[1..n,1..n] A := B + C;

[R] A := B + C; -- Same as above

• Regions are scoped 
• [R] begin All array computations in compound 

… statements are performed over indices
[Left] … in [R], except statement prefixed by 

end; [Left]

• Operations over region elements performed in 
parallel



Parallelism In Statement Evaluation

• Let A, B be arrays over [1..n,1..n], and C be 
an array over [2..n-1,2..n-1] as in

var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;

• Then
[2..n-1,2..n-1] A := C;

[2..n-1,2..n-1] C := A + B;

[2..n-1, 2] A := B;

:=

:= +

:=



@ Uses Regions & Directions
The @ operator combines regions with directions 

to allow references to neighbors
• Two forms, standard(@) and wrapping(@^)

• Syntax:  A@east     A@^east
• Semantics: the direction is added to elements 

of region giving new region, whose elements 
are referenced; think of a region translation

[1..n,1..n] A := A@^east; -- shift array left with wrap around

• @-modified variables can appear on l or r of :=
:=



Parallelism In Statement Evaluation

• Let 
var A, B : [1..n,1..n] float; C : [2..n-1,2..n-1] float;
direction east = [0,1]; ne = [-1,1];

• Then
[2..n-1,2..n-1] A := C@^east;

[2..n-1,2..n-1] A := C@^ne + B@^ne;

[2, 2..n-1] A@east := B; :=

:=

:= +



Reductions, Global Combining Operations

• Reduction (<<) “reduces” the size of an array 
by combining its elements

• Associative (and commutative) operations are 
+<<, *<<, &<<, |<<, max<<, min<<

[1..n, 1..n] biggest := max<<A;
[R]           all_false := |<< TW;

• All elements participate; order of evaluation is 
unspecified … caution floating point users

• ZPL also has partial reductions, scans, partial 
scans, and user defined reductions and 
scans



Socrates: Unexamined Life Not Worth...
program Life;
config var n : integer = 512; 
region     R = [1..n, 1..n]; 

direction NW = [-1,-1]; N = [-1, 0]; NE = [-1, 1];  
W = [ 0,-1];               E = [ 0, 1]; 

SW = [ 1,-1]; S = [ 1, 0]; SE = [ 1, 1];

var NN : [R] ubyte; TW : [R] boolean;

procedure Life();
[R] begin

/* Read in the data */

repeat
NN :=  TW@^NW + TW@^N  + TW@^NE

+ TW@^W           + TW@^E 
+ TW@^SW + TW@^S  + TW@^SE;

TW := (NN=2 & TW) | (NN=3);
until ! |<<TW;

end;



Applying Ideas: Jacobi Iteration
• Model heat defusing through a plate

• Represent as array of floating point numbers
• Use a 4-point stencil to model defusing

• Main steps when thinking globally

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

Initialize
Compute new averages
Find the largest error
Update array
… until convergence



The “High Level” Logic Of J-Iteration
program Jacobi;
config var n : integer = 512; 

eps : float = 0.00001;

region     R = [1..n, 1..n]; 
BigR = [0..n+1,0..n+1];

direction  N = [-1, 0];  S = [ 1, 0];
E = [ 0, 1];  W = [ 0,-1];

var Temp : [R] float;
A : [BigR] float;

err : float;

procedure Jacobi();
[R] begin

[BigR] A := 0.0;
[S of R] A := 1.0;

repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err  := max<< abs(Temp - A);
A    := Temp;

until err < eps;
end;

end;

Initialize
Compute new averages
Find the largest error
Update array
… until convergence

Initialize
Compute new averages
Find the largest error
Update array
… until convergence



Partial Reductions 

• Partial reductions reduce dimensions without 
reducing to a scalar, e.g. adding up rows

• Partial reductions require two regions, one on 
the operator and one on the statement
Let A ⇔ [1..n,1..n], Col1 ⇔ [1..n,1] Rown ⇔[n.1..n]

[1..n,1] Col1   := +<<[1..n,1..n] A;  -- Add across rows
[n,1..n] Rown := max<<[1..n,1..n] A; -- Max down cols

• The compiler compares the two regions and 
figures out which one(s) to reduce



Index1 ...
• ZPL comes with “constant arrays” of any size

• Indexi means indices of the ith dimension
[1..n,1..n]  begin

Z := Index1; -- fill with first index

P := Index2; -- fill with second index

L := Z=P;    -- define identity array

end;

• Indexi arrays: compiler created using no space
1  1  1  1
2  2  2  2
3  3  3  3
4  4  4  4

1  2  3  4
1  2  3  4
1  2  3  4
1  2  3  4

Index1 Index2

1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

L



Flood 
Flood (>>) is the inverse of reduce: it replicates 

data from lower dimensions to higher
• Like reduce it takes two regions, one on the 

operator and one on the statement
[1..m,1..n] A := >>[1..m,k] B; -- Replicate B’s kth column

• The replication uses broadcast, often an efficient 
operation

• Matrix vector operations…flood vector to match 
shape: A [1..m,1..n] MaxC [1..m,1]:

[1..m,1] MaxC := max<<[1..m,1..n] A; --Find max of each row
[1..m,1..n]    A := A / >>[1..m,1] MaxC;--Scale each row by max 



Closer Look At Scaling Each Row
[1..m,1] MaxC := max<<[1..m,1..n] A; --Find max of each row
[1..m,1..n]    A := A / >>[1..m,1] MaxC;--Scale each row by max

• Flooding distributes values (efficiently) so that 
the computation is element-wise … lowers 
communication 

2  4  4  2
0  2  3  6
3  3  3  3
8  2  4  0

A

4 
6
3
8

MaxC >>[1..m,1] MaxC

4  4  4  4
6  6  6  6
3  3  3  3
8  8  8  8

The purpose of keeping MaxC a 2D array is control how it is allocatedThe purpose of keeping MaxC a 2D array is control how it is allocated



Flood Regions and Arrays
Flood dimensions recognize that specifying a 

particular column over specifies the situation
Need a generic column -- or a column that does 

not have a specific position … use ‘*’ as value

region   FlCol = [1..m, *];      -- Flood regions

FlRow = [*, 1..n];

var MaxC : [FlCol] double; --An m length col

Row : [FlRow] double; -- An n length row

[1..m,*] MaxC := max<< [1..m,1..n] A; -- Better
max

......
Think of column 
in every position

Think of column 
in every position



Flood arrays (continued)

Since flood arrays have some unspecified 
dimensions, they can be “promoted” in those 
dimensions, i.e logically replicated

• Scaling a value by max of row w/o flooding:

[1..m,*]   MaxC := max<< [1..m,1..n] A;

[1..m,1..n]      A := A / MaxC;     --Scale A;

The promotion of flooded arrays is only logicalThe promotion of flooded arrays is only logical



Recall Matrix Multiplication (MM)

• For n ×××× n arrays A and B, compute C = AB 

where crs = Σ1≤k ≤ n arkbks

s

r

+××××
1

1

××××
2

2

××××
3

3

××××
n

n

+ + ... +=

A BC



MM Illustrates Computing With Flood 

• The SUMMA Algorithm
A BC

b11 b12

a11

a21

a11b11

a21b11

a11b12

a21b12

Switch Orientation -- By 
using a column of A and 
a row of B broadcast to 
all, compute the “next”
terms of the dot product

Switch Orientation -- By 
using a column of A and 
a row of B broadcast to 
all, compute the “next”
terms of the dot product



SUMMA Algorithm

• A column broadcast is simply a column flood 
and similarly a row broadcast is a row flood

• Define variables

var Col : [1..m,*] double; -- Col flood array

Row : [*,1..p] double; -- Row flood array

A : [1..m,1..n] double;

B : [1..n,1..p] double;

C : [1..m,1..p] double;



SUMMA Algorithm (continued)

For each col-row in the common dimension, flood 
the item and combine it...

[1..m,1..p]    C := 0.0;       -- Initialize C

for k := 1 to n do

[1..m,*]  Col := >>[ ,k] A; -- Flood kth col of A

[*,1..p]  Row := >>[k, ] B; -- Flood kth row of B

[1..m,1..p]    C += Col*Row;   -- Combine elements

end;

--- or, more simply ---
for k := 1 to n do

[1..m,1..p]  C += (>>[ ,k] A)*(>>[k, ] B);

end;



Still Another MM Algorithm
If flooding is so good for columns/rows, why not 

use it for whole planes?
region IK = [1..n,*,1..n]

JK = [*,1..n,1..n];

IJ = [1..n,1..n,*];

IJK = [1..n,1..n,1..n];

[IK]  A2 := A#[Index1, Index2]; 

[JK]  B2 := B#[Index2, Index1];

[IJ]   C := +<<[IJK](>>[IK]A2)*(>>[JK]B2);

Input
A2

B2

C



Optimizations of ZPL

C, Java and most sequential languages operate 
on one scalar value at a time
– Compilation focuses on single operations
– Optimization has limited impact … combine two 

ops or remove an op or load saves one instruction
– It’s hard to see the forest for the trees

ZPL and other array languages specify 
computation in large units … optimizations 
can have a large impact 



Two Types of Costs
• Parallel computation differs from sequential 

computation in that interprocessor
communication is pure overhead …

• For parallel languages
• Communication is a potential source of savings
• Computation is a potential source of savings

Interconnection Network

...vN vN vN vN vN vN

C

Processor

Memory
N
I
C



Looking Closer at Costs

Consequences of two forms of improvement
– Removing communication is always a win
– Because of multiple processors it’s possible to 

replace comm with comp is usually a win
• Sequential computation like a loop i := i + 1

– Moving communication can improve performance
• Comm is performed by co-processor via DMA so 

processor can continue to work
• Prefetching and pipelining can help 

All scalar optimizations still benefit



Bumpers and Walkers
Recall “loop induction variable elimination”

removed explicit index references, replacing 
them with pointer … ZPL applies this a lot

[prev of R] begin
SampleT := 0.0;
SampleXPos := 0.0;
SampleYPos := 0.0;

end;

for (i=p.o.R.mylo;i<p.o.R.myhi;i++){
SampleT[i]=0.0;}

for (i=p.o.R.mylo;i<p.o.R.myhi;i++){
SampleXPos[i]=0.0;}

for (i=p.o.R.mylo;i<p.o.R.myhi;i++){
SampleYPos[i]=0.0;}



Loop Fusion

Classic: consecutive loops over the same range 
can be merged, giving a longer loop body 
with (hopefully) more straight line code 
for (i=p.o.R.mylo;i<p.o.R.myhi;i++){

SampleT[i]=0.0;}
for (i=p.o.R.mylo;i<p.o.R.myhi;i++){

SampleXPos[i]=0.0;}
for (i=p.o.R.mylo;i<p.o.R.myhi;i++){

SampleYPos[i]=0.0;}

for (i=p.o.R.mylo;i<p.o.R.myhi;i++){
SampleT[i]=0.0;
SampleXPos[i]=0.0;
SampleYPos[i]=0.0;}



Array Contraction
• Classic: Reduce an array (temp) to a scalar to 

improve locality and put variable in register 

• First, fuse the loops

[R] T1 := (A + A@east)/2;
T2 := (A + A@west)/2;
A := max(T1,T2);

for (i=R.mylo;i<R.myhi;i++){
T1[i]=((A[i]+A[i+1])/2;}

for (i=R.mylo;i<R.myhi;i++){
T2[i]=((A[i]+A[i-1])/2;}

for (i=R.mylo;i<R.myhi;i++){
A[i]=max(T1[i],T2[i]);}



Array Contraction, continued
• Fused loops:

• Discover that T1, T2 not live after loop

• Analyze references … what values are 
needed to compute A[i]?   A[i], A[i-1], A[i+1]

• Create code to save values

for (i=R.mylo;i<R.myhi;i++){
T1[i]=((A[i]+A[i+1])/2;
T2[i]=((A[i]+A[i-1])/2;
A[i]= max(T1[i],T2[i]);}



Array Contraction, continued

… And reduce T1 and T2 to scalars t1 and t2

ai_west = A[R.mylo-1];
ai = A[R.mylo];

for (i=R.mylo;i<R.myhi;i++){
ai_east = A[i+1];
t1      =((ai+ai_east)/2;
t2      =((ai+ai_west)/2;
A[i]    = max(t1,t2);
ai_west = ai;
ai = ai_east;

}



Compiler Created Temps
• Suppose that rather than writing 

• The programmer had written

• The compiler would have generated a (single) 
array temporary since A is on the left and 
right

[R] T1 := (A + A@east)/2;
T2 := (A + A@west)/2;
A := max(T1,T2);

[R] A := max(A + A@east, A + A@west)/2;



Factor-Join Optimizations

• Consider a bounding box ZPL computation
type point = record

x : float; 
y : float; 

end;  …
lox := min<<Pts.x;
loy := min<<Pts.y;
hix := max<<Pts.x;
hiy := max<<Pts.y;

var Pts : [R] point;



Factor-Join Optimizations

• Consider a bounding box ZPL computation
type point = record

x : float; 
y : float; 

end;  …
lox := min<<Pts.x;
loy := min<<Pts.y;
hix := max<<Pts.x;
hiy := max<<Pts.y;

min

min

min

min min

min

min



IR for Macro Operations

• Express the operations at large grain

<<

:=

min

+∞

lox <<

:=

min

+∞

loy <<

:=

max

-∞

hix <<

:=

max

-∞

hiy



Factor Join

• Recognize that communication and array 
traversals are expensive operations that can 
benefit from combining
– Reductions/Scans can be merged because data 

size is usually small relative to packet capacity
– Merging array traversals improves cache 

performance
– Etc.

• Factor array operations into components, and 
join into new “merged” operations



IR for Macro Operations
:=

lox

+∞

:=

temp

-∞

min
min
max
max -∞

+∞

min<<
min<<
max<<
max<<

temp.lx

:=

loy temp.ly

:=

hix temp.hx

:=

hiy temp.hy



Recall Conway’s Life Program…

Conway’s Life: The World is bits
[R] repeat

NN := TW@^NW + TW@^N + TW@^NE
+ TW@^W +                    TW@^E
+ TW@^SW + TW@^S + TW@^SE;

TW := (TW & NN = 2) | (NN = 3);
until ! (|<< TW);

Add up 
neighbor bits

Add up 
neighbor bits

Apply rules 
to live by

Apply rules 
to live by

“Or” bits in world 
to see if any alive

“Or” bits in world 
to see if any alive

Cartoon of counting neighbors: Array of NW neighbors+
array of north neighbors+array of NE neighbors+...

Edges wrap around �

:= + + + + + + +



Stencil Optimizations

• When walking over an array referencing 
neighbors by stencil,      the references are 
repeated

Approach:
Recognize stencil usage
Move values to registers
Precompute sums …
Which sums to do?

Local allocation

What can you save?


