
1

Semantic Analysis

Having figured out the program’s
structure, now figure out what it means

Compiler Passes

Analysis
of input program

(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

Semantic Analysis/Checking

Semantic analysis: the final part of the analysis
half of compilation
– afterwards comes the synthesis half of compilation

Purposes:
• perform final checking of legality of input program,

“missed” by lexical and syntactic checking

• name resolution, type checking, break stmt in loop, ...

• “understand” program well enough to do synthesis

• Typical goal: relate assignments to & references of
particular variable

Symbol Tables

Key data structure during semantic analysis,
code generation

Build in semantic pass

Stores info about the names used in program
– a map (table) from names to info about them
– each symbol table entry is a binding
– a declaration adds a binding to the map
– a use of a name looks up binding in the map
– report a type error if none found

An Example

class C {

int x;

boolean y;

int f(C c) {

int z;

...

...z...c...new C()...x...f(..)...

}

}

A Bigger Example
class C {

int x;

boolean y;

int f(C c) {

int z;

...

{

boolean x;

C z;

int f;

...z...c...new C()...x...f(...)...

}

...z...c...new C()...x...f(...)...

}

}

2

Nested Scopes
Can have same name declared in different scopes
• Want references to use closest textually-enclosing

declaration
• static/lexical scoping, block structure

• closer declaration shadows declaration of enclosing scope

Simple solution:
– one symbol table per scope

– each scope’s symbol table refers to its lexically enclosing
scope’s symbol table

– root is the global scope’s symbol table
– look up declaration of name starting with nearest symbol

table, proceed to enclosing symbol tables if not found locally

All scopes in program form a tree

Name Spaces
Sometimes we can have same name refer to different

things, but still unambiguously. Example:
class F {

int F(F F) {

// 3 different F’s are available here!

... new F() ...

... F = ...

... this.F(...) ...

}

}

In MiniJava: three name spaces
• classes, methods, and variables

• We always know which we mean for each name
reference, based on its syntactic position

Simple solution: symbol table stores a separate map for
each name space

Information About Names

• Different kinds of declarations store different
information about their names
– must store enough information to be able to check

later references to the name

• A variable declaration:
• its type

• whether it’s final, etc.

• whether it’s public, etc.
• (maybe) whether it’s a local variable, an instance

variable, a global variable, or ...

Information About Names (Continued)

• A method declaration:
• its argument and result types

• whether it’s static, etc.

• whether it’s public, etc.

• A class declaration:
• its class variable declarations

• its method and constructor declarations

• its superclass

Generic Type Checking Algorithm
• To do semantic analysis & checking on a program,

recursively type check each of the nodes in the
program’s AST,each in the context of the symbol table
for its enclosing scope

• going down, create any nested symbol tables & context needed
• recursively type check child subtrees
• on the way back up, check that the children are legal in the context

of their parents

• Each AST node class defines its own type check
method, which fills in the specifics of this recursive
algorithm

• Generally:
• declaration AST nodes add bindings to the current symbol table
• statement AST nodes check their subtrees
• expression AST nodes check their subtrees and return a result type

MiniJava Type Check Implementation
In the SymbolTable subdirectory:
Various SymbolTable classes, organized into a hierarchy:

SymbolTable

GlobalSymbolTable

NestedSymbolTable

ClassSymbolTable

CodeSymbolTable

• Support the following operations (and more):
• declareClass, lookupClass

• declareInstanceVariable,

declareLocalVariable,

lookupVariable

• declareMethod, lookupMethod

3

Class, Variable and Method Information

lookupClass returns a ClassSymbolTable
– includes all the information about the class’s interface

lookupVariable returns a VarInterface
– stores the variable’s type

A hierarchy of implementations:
VarInterface

LocalVarInterface

InstanceVarInterface

lookupMethod returns a MethodInterface
– stores the method’s argument and result types

Key AST Type Check Operations

void Program.typecheck()
throws TypecheckCompilerExn;

– typecheck the whole program

void Stmt.typecheck(CodeSymbolTable)
throws TypecheckCompilerExn;

– Type check a statement in the context of the given symbol table

ResolvedType Expr.typecheck(CodeSymbolTable)
throws TypecheckCompilerExn;

– type check an expression in the context of the given symbol
table, returning the type of the result

Forward References
Typechecking class declarations is tricky: need to allow for

forward references from the bodies of earlier classes to
the declarations of later classes

class First {

Second next; // must allow this forward ref

int f() {

... next.g() ... // and this forward ref

}

}

class Second {

First prev;

int g() {

... prev.f() ...

}

}

Supporting Forward References

Simple solution:
type check a program’s class declarations in multiple
passes

• first pass: remember all class declarations
{First --> class{?}, Second -->class{?}}

• second pass: compute interface to each class, checking
class types in headers
{First --> class{next:Second },

Second -->class{prev:First }}

• third pass: check method bodies, given interfaces

Supporting Forward References [continued]

void
ClassDecl.declareClass(GlobalSymbolTable)

throws TypecheckCompilerExn;

• declare the class in the global symbol table
void ClassDecl.computeClassInterface()

throws TypecheckCompilerExn;

• fill out the class’s interface, given the declared classes
void ClassDecl.typecheckClass()

throws TypecheckCompilerExn;

• type check the body of the class, given all classes’
interfaces

Example Type Checking Operation
class VarDeclStmt {

String name;

Type type;

void typecheck(CodeSymbolTable st)

throws TypecheckCompilerExn {
st.declareLocalVar(type.resolve(st), name);

}

}

• resolve checks that a syntactic type expression is a
legal type, and returns the corresponding resolved
type

• declareLocalVar checks for duplicate variable
declaration in this scope

4

Example Type Checking Operation
class AssignStmt {

String lhs;

Expr rhs;

void typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

VarInterface lhs_iface = st.lookupVar(lhs);

ResolvedType lhs_type = lhs_iface.getType();

ResolvedType rhs_type = rhs.typecheck(st);

rhs_type.checkIsAssignableTo(lhs_type);

}

}

lookupVar checks that the name is declared as a var
checkIsAssignableTo verifies that an expression yielding the

rhs type can be assigned to a variable declared to be of lhs type
• initially, rhs type is equal to or a subclass of lhs type

Example Type Checking Operation

class IfStmt {

Expr test;

Stmt then_stmt;

Stmt else_stmt;

void typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

ResolvedType test_type = test.typecheck(st);

test_type.checkIsBoolean();

then_stmt.typecheck(st);

else_stmt.typecheck(st);

}

}

• checkIsBoolean checks that the type is a boolean

Example Type Checking Operation

class BlockStmt {

List<Stmt> stmts;

void typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

CodeSymbolTable nested_st =

new CodeSymbolTable(st);

foreach Stmt stmt in stmts {

stmt.typecheck(nested_st); }

}

}

• (Garbage collection will reclaim nested_st when
done)

Example Type Checking Operation

class IntLiteralExpr extends Expr {

int value;

ResolvedType typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

return ResolvedType.intType();

}

}

ResolvedType.intType() returns the resolved int type

Example Type Checking Operation

class VarExpr extends Expr {

String name;

ResolvedType typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

VarInterface iface = st.lookupVar(name);

return iface.getType();

}

}

Example Type Checking Operation

class AddExpr extends Expr {

Expr arg1;

Expr arg2;

ResolvedType typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

ResolvedType arg1_type =

arg1.typecheck(st);

ResolvedType arg2_type =

arg2.typecheck(st);

arg1_type.checkIsInt();

arg2_type.checkIsInt();

return ResolvedType.intType();

}

}

5

Polymorphism and Overloading
Some operations are defined on multiple types
Example: assignment statement: lhs = rhs;

• works over any lhs & rhs types, as long as they’re compatible
• works the same way for all such types

Assignment is a polymorphic operation

Another example: equals expression: expr1 == expr2
• works if both exprs are ints or both are booleans (but nothing

else, in MiniJava)
• compares integer values if both are ints, compares boolean

values if both are booleans
• works differently for different argument types

Equality testing is an overloaded operation

Polymorphism and Overloading [continued]

• Full Java allows methods & constructors to be
overloaded, too

• different methods can have same name but different
argument types

• Java 1.5 supports (parametric) polymorphism
via generics: parameterized classes and
methods

An Example Overloaded Type Check
class EqualExpr extends Expr {

Expr arg1;

Expr arg2;
ResolvedType typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

ResolvedType arg1_type = arg1.typecheck(st);

ResolvedType arg2_type = arg2.typecheck(st);

if (arg1_type.isIntType() &&

arg2_type.isIntType()) {

// resolved overloading to int version
return ResolvedType.booleanType();

} else if (arg1_type.isBooleanType() &&

arg2_type.isBooleanType()) {

// resolved overloading to boolean version
return ResolvedType.booleanType();

} else {

throw new TypecheckCompilerException("bad
overload");

}}}

Type Checking Extensions in Project [1]

Add resolved type for double

Add resolved type for arrays
– parameterized by element type

Questions:
– when are two array types equal?
– when is one a subtype of another?
– when is one assignable to another?

Add symbol table support for static class variable
declarations
– StaticVarInterface class
– declareStaticVariable method

Type Checking Extensions in Project [2]

Implement type checking for new statements and
expressions:
IfStmt

• else stmt is optional
ForStmt

• loop index variable must be declared to be an int
• initializer & increment expressions must be ints
• test expression must be a boolean

BreakStmt
• must be nested in a loop

DoubleLiteralExpr
• result is double

OrExpr
• like AndExpr

Type Checking Extensions in Project [3]
ArrayAssignStmt

• array expr must be an array
• index expr must be an int
• rhs expr must be assignable to array’s element type

ArrayLookupExpr
• array expr must be an array
• index expr must be an int
• result is array’s element type

ArrayLengthExpr
• array expr must be an array
• result is an int

ArrayNewExpr
• length expr must be an int
• element type must be a legal type
• result is array of given element type

6

Type Checking Extensions in Project [4]
Extend existing operations on ints to also work on doubles

Allow unary operations taking ints (NegateExpr) to be overloaded
on doubles

Allow binary operations taking ints (AddExpr, SubExpr,
MulExpr, DivExpr, LessThanExpr,LessEqualExpr,
GreaterEqualExpr, GreaterThanExpr,EqualExpr,
NotEqualExpr) to be overloaded on doubles
– also allow mixed arithmetic: if operator invoked on an int and a

double, then implicitly coerce the int to a double and then use the
double version

Extend isAssignableTo to allow ints to be assigned/passed/
returned to doubles, via an implicit coercion

Type Checking Terminology
Static vs. dynamic typing

• static: checking done prior to execution (e.g. compile-time)
• dynamic: checking during execution

Strong vs. weak typing
• strong: guarantees no illegal operations performed
• weak: can’t make guarantees

Caveats:
• Hybrids common
• Mistaken usage

also common
• “untyped,” “typeless”

could mean dynamic
or weak

weak

strong

dynamicstatic

Type Checking Terminology
Static vs. dynamic typing

• static: checking done prior to execution (e.g. compile-time)
• dynamic: checking during execution

Strong vs. weak typing
• strong: guarantees no illegal operations performed
• weak: can’t make guarantees

Caveats:
• Hybrids common
• Mistaken usage

also common
• “untyped,” “typeless”

could mean dynamic
or weak

PERL (1-5)Cweak

LispJavastrong

dynamicstatic

Type Equivalence
When is one type equal to another?

implemented in MiniJava with
ResolvedType.equals(ResolvedType) method

“Obvious” for atomic types like int , boolean , class
types

What about type "constructors" like arrays?
int[] a1;

int[] a2;

int[][] a3;

boolean[] a4;

Rectangle[] a5;

Rectangle[] a6;

Type Equivalence

Parameterized types in Java 1.5:
List<int>l1; List<int>l2; List<List<int>>l3;

In C:
int* p1; int* p2;

struct {int x;} s1; struct {int x;} s2;

typedef struct {int x;} S; S s3; S s4;

Name vs Structural Equivalence
Name equivalence:

two types are equal iff they came from the same textual occurrence
of a type constructor

• implement with pointer equality of ResolvedType instances
• special case: type synonyms (e.g. typedef) don’t define new types
• e.g. class types, struct types in C, datatypes in ML

Structural equivalence:
two types are equal iff they have same structure
– if atomic types, then obvious
– if type constructors:

• same constructor
• recursively, equivalent arguments to constructor

– implement with recursive implementation of equals, or by
canonicalization of types when types created then use pointer
equality

– e.g. atomic types, array types, record types in ML

7

Type Conversions and Coercions

In Java, can explicitly convert an object of
type double to one of type int
– can represent as unary operator
– typecheck, codegen normally

In Java, can implicitly coerce an object of type
int to one of type double
– compiler must insert unary conversion operators,

based on result of type checking

Type Casts
In C and Java, can explicitly cast an object of one type

to another
• sometimes cast means a conversion (casts between numeric

types)
• sometimes cast means just a change of static type without

doing any computation (casts between pointer types or pointer
and numeric types)

In C: safety/correctness of casts not checked
• allows writing low-level code that’s type-unsafe
• more often used to work around limitations in C’s static type

system

In Java: downcasts from superclass to subclass include
run-time type check to preserve type safety

• static typechecker allows the cast
• codegen introduces run-time check
• Java’s main form of dynamic type checking

