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Semantic Analysis

Having figured out the program’s 
structure, now figure out what it means
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Semantic Analysis/Checking

Semantic analysis: the final part of the analysis 
half of compilation 
– afterwards comes the synthesis half of compilation 

Purposes: 
• perform final checking of legality of input program, 

“missed” by lexical and syntactic checking 

• name resolution, type checking, break stmt in loop, ... 

• “understand” program well enough to do synthesis 

• Typical goal: relate assignments to & references of 
particular variable

Symbol Tables

Key data structure during semantic analysis, 
code generation

Build in semantic pass

Stores info about the names used in program 
– a map (table) from names to info about them 
– each symbol table entry is a binding 
– a declaration adds a binding to the map 
– a use of a name looks up binding in the map 
– report a type error if none found

An Example

class C { 

int x; 

boolean y; 

int f(C c) { 

int z; 

... 

...z...c...new C()...x...f(..)... 

} 

}

A Bigger Example
class C { 

int x; 

boolean y; 

int f(C c) { 

int z;

... 

{ 

boolean x; 

C z; 

int f; 

...z...c...new C()...x...f(...)...

} 

...z...c...new C()...x...f(...)...

}

}
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Nested Scopes
Can have same name declared in different scopes 
• Want references to use closest textually-enclosing 

declaration 
• static/lexical scoping, block structure 

• closer declaration shadows declaration of enclosing scope 

Simple solution: 
– one symbol table per scope 

– each scope’s symbol table refers to its lexically enclosing 
scope’s symbol table 

– root is the global scope’s symbol table 
– look up declaration of name starting with nearest symbol 

table, proceed to enclosing symbol tables if not found locally 

All scopes in program form a tree

Name Spaces
Sometimes we can have same name refer to different 

things, but still unambiguously. Example: 
class F { 

int F(F F) { 

// 3 different F’s are available here! 

... new F() ... 

... F = ... 

... this.F(...) ... 

}

}

In MiniJava: three name spaces 
• classes, methods, and variables 

• We always know which we mean for each name 
reference, based on its syntactic position 

Simple solution: symbol table stores a separate map for 
each name space

Information About Names

• Different kinds of declarations store different 
information about their names 
– must store enough information to be able to check 

later references to the name 

• A variable declaration: 
• its type 

• whether it’s final, etc. 

• whether it’s public, etc. 
• (maybe) whether it’s a local variable, an instance 

variable, a global variable, or ...

Information About Names (Continued)

• A method declaration: 
• its argument and result types 

• whether it’s static, etc. 

• whether it’s public, etc. 

• A class declaration: 
• its class variable declarations 

• its method and constructor declarations 

• its superclass

Generic Type Checking Algorithm
• To do semantic analysis & checking on a program, 

recursively type check each of the nodes in the 
program’s AST,each in the context of the symbol table 
for its enclosing scope 

• going down, create any nested symbol tables & context needed 
• recursively type check child subtrees
• on the way back up, check that the children are legal in the context 

of their parents 

• Each AST node class defines its own type check 
method, which fills in the specifics of this recursive 
algorithm 

• Generally: 
• declaration AST nodes add bindings to the current symbol table 
• statement AST nodes check their subtrees
• expression AST nodes check their subtrees and return a result type

MiniJava Type Check Implementation
In the SymbolTable subdirectory: 
Various SymbolTable classes, organized into a hierarchy: 

SymbolTable

GlobalSymbolTable

NestedSymbolTable

ClassSymbolTable

CodeSymbolTable

• Support the following operations (and more): 
• declareClass, lookupClass

• declareInstanceVariable, 

declareLocalVariable, 

lookupVariable

• declareMethod, lookupMethod
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Class, Variable and Method Information

lookupClass returns a ClassSymbolTable
– includes all the information about the class’s interface 

lookupVariable returns a VarInterface
– stores the variable’s type 

A hierarchy of implementations: 
VarInterface

LocalVarInterface

InstanceVarInterface

lookupMethod returns a MethodInterface
– stores the method’s argument and result types 

Key AST Type Check Operations

void Program.typecheck()
throws TypecheckCompilerExn;

– typecheck the whole program 

void Stmt.typecheck(CodeSymbolTable)
throws TypecheckCompilerExn;

– Type check a statement in the context of the given symbol table

ResolvedType Expr.typecheck(CodeSymbolTable) 
throws TypecheckCompilerExn; 

– type check an expression in the context of the given symbol 
table, returning the type of the result

Forward References
Typechecking class declarations is tricky: need to allow for 

forward references from the bodies of earlier classes to 
the declarations of later classes 

class First { 

Second next;  // must allow this forward ref 

int f() { 

... next.g() ...  // and this forward ref 

} 

} 

class Second { 

First prev; 

int g() { 

... prev.f() ...

}

}

Supporting Forward References

Simple solution: 
type check a program’s class declarations in multiple 
passes 

• first pass: remember all class declarations
{First --> class{?}, Second -->class{?}}

• second pass: compute interface to each class, checking 
class types in headers
{First --> class{next:Second }, 

Second -->class{prev:First }} 

• third pass: check method bodies, given interfaces

Supporting Forward References [continued]

void 
ClassDecl.declareClass(GlobalSymbolTable )    

throws TypecheckCompilerExn; 

• declare the class in the global symbol table 
void ClassDecl.computeClassInterface()   

throws TypecheckCompilerExn; 

• fill out the class’s interface, given the declared classes 
void ClassDecl.typecheckClass() 

throws TypecheckCompilerExn; 

• type check the body of the class, given all classes’
interfaces

Example Type Checking Operation
class VarDeclStmt { 

String name; 

Type type; 

void typecheck(CodeSymbolTable st) 

throws TypecheckCompilerExn { 
st.declareLocalVar(type.resolve(st), name);

}

}

• resolve checks that a syntactic type expression is a 
legal type, and returns the corresponding resolved 
type 

• declareLocalVar checks for duplicate variable 
declaration in this scope  
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Example Type Checking Operation
class AssignStmt { 

String lhs; 

Expr rhs; 

void typecheck(CodeSymbolTable st) 

throws TypecheckCompilerException { 

VarInterface lhs_iface = st.lookupVar(lhs); 

ResolvedType lhs_type = lhs_iface.getType(); 

ResolvedType rhs_type = rhs.typecheck(st); 

rhs_type.checkIsAssignableTo(lhs_type);    

} 

}

lookupVar checks that the name is declared as a var
checkIsAssignableTo verifies that an expression yielding the 

rhs type can be assigned to a variable declared to be of lhs type 
• initially, rhs type is equal to or a subclass of lhs type

Example Type Checking Operation

class IfStmt { 

Expr test; 

Stmt then_stmt; 

Stmt else_stmt; 

void typecheck(CodeSymbolTable st) 

throws TypecheckCompilerException { 

ResolvedType test_type = test.typecheck(st);    

test_type.checkIsBoolean(); 

then_stmt.typecheck(st); 

else_stmt.typecheck(st);    

} 

}

• checkIsBoolean checks that the type is a boolean

Example Type Checking Operation

class BlockStmt { 

List<Stmt> stmts; 

void typecheck(CodeSymbolTable st) 

throws TypecheckCompilerException { 

CodeSymbolTable nested_st = 

new CodeSymbolTable(st); 

foreach Stmt stmt in stmts { 

stmt.typecheck(nested_st); }    

} 

}

• (Garbage collection will reclaim nested_st when 
done)

Example Type Checking Operation

class IntLiteralExpr extends Expr { 

int value; 

ResolvedType typecheck(CodeSymbolTable st) 

throws TypecheckCompilerException { 

return ResolvedType.intType();    

}

}

ResolvedType.intType() returns the resolved int type

Example Type Checking Operation

class VarExpr extends Expr { 

String name; 

ResolvedType typecheck(CodeSymbolTable st) 

throws TypecheckCompilerException { 

VarInterface iface = st.lookupVar(name); 

return iface.getType();    

} 

} 

Example Type Checking Operation

class AddExpr extends Expr { 

Expr arg1; 

Expr arg2; 

ResolvedType typecheck(CodeSymbolTable st) 

throws TypecheckCompilerException { 

ResolvedType arg1_type =       

arg1.typecheck(st); 

ResolvedType arg2_type = 

arg2.typecheck(st); 

arg1_type.checkIsInt(); 

arg2_type.checkIsInt(); 

return ResolvedType.intType();    

} 

}
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Polymorphism and Overloading
Some operations are defined on multiple types 
Example: assignment statement: lhs = rhs; 

• works over any lhs & rhs types, as long as they’re compatible 
• works the same way for all such types 

Assignment is a polymorphic operation 

Another example: equals expression: expr1 == expr2 
• works if both exprs are ints or both are booleans (but nothing 

else, in MiniJava) 
• compares integer values if both are ints, compares boolean

values if both are booleans
• works differently for different argument types 

Equality testing is an overloaded operation 

Polymorphism and Overloading [continued]

• Full Java allows methods & constructors to be 
overloaded, too 

• different methods can have same name but different 
argument types 

• Java 1.5 supports (parametric) polymorphism 
via generics: parameterized classes and 
methods

An Example Overloaded Type Check
class EqualExpr extends Expr { 

Expr arg1; 

Expr arg2; 
ResolvedType typecheck(CodeSymbolTable st) 

throws TypecheckCompilerException { 

ResolvedType arg1_type = arg1.typecheck(st); 

ResolvedType arg2_type = arg2.typecheck(st); 

if (arg1_type.isIntType() &&  

arg2_type.isIntType()) { 

// resolved overloading to int version
return ResolvedType.booleanType(); 

} else if (arg1_type.isBooleanType() &&         

arg2_type.isBooleanType()) { 

// resolved overloading to boolean version
return ResolvedType.booleanType(); 

} else { 

throw new TypecheckCompilerException("bad
overload"); 

}}}

Type Checking Extensions in Project [1]

Add resolved type for double

Add resolved type for arrays 
– parameterized by element type 

Questions: 
– when are two array types equal? 
– when is one a subtype of another? 
– when is one assignable to another? 

Add symbol table support for static class variable 
declarations 
– StaticVarInterface class
– declareStaticVariable method 

Type Checking Extensions in Project [2]

Implement type checking for new statements and 
expressions: 
IfStmt

• else stmt is optional 
ForStmt

• loop index variable must be declared to be an int
• initializer & increment expressions must be ints
• test expression must be a boolean

BreakStmt
• must be nested in a loop 

DoubleLiteralExpr
• result is double 

OrExpr
• like AndExpr

Type Checking Extensions in Project [3]
ArrayAssignStmt

• array expr must be an array 
• index expr must be an int
• rhs expr must be assignable to array’s element type 

ArrayLookupExpr
• array expr must be an array 
• index expr must be an int
• result is array’s element type 

ArrayLengthExpr
• array expr must be an array 
• result is an int

ArrayNewExpr
• length expr must be an int
• element type must be a legal type 
• result is array of given element type 
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Type Checking Extensions in Project [4]
Extend existing operations on ints to also work on doubles 

Allow unary operations taking ints (NegateExpr ) to be overloaded 
on doubles 

Allow binary operations taking ints (AddExpr, SubExpr, 
MulExpr, DivExpr, LessThanExpr,LessEqualExpr, 
GreaterEqualExpr, GreaterThanExpr,EqualExpr, 
NotEqualExpr ) to be overloaded on doubles 
– also allow mixed arithmetic: if operator invoked on an int and a 

double, then implicitly coerce the int to a double and then use the 
double version 

Extend isAssignableTo to allow ints to be assigned/passed/ 
returned to doubles, via an implicit coercion

Type Checking Terminology
Static vs. dynamic typing 

• static: checking done prior to execution (e.g. compile-time) 
• dynamic: checking during execution 

Strong vs. weak typing 
• strong: guarantees no illegal operations performed 
• weak: can’t make guarantees

Caveats:
• Hybrids common
• Mistaken usage 

also common
• “untyped,” “typeless”

could mean dynamic 
or weak

weak

strong

dynamicstatic
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Caveats:
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Type Equivalence
When is one type equal to another? 

implemented in MiniJava with 
ResolvedType.equals(ResolvedType) method 

“Obvious” for atomic types like int , boolean , class 
types 

What about type "constructors" like arrays? 
int[] a1; 

int[] a2; 

int[][] a3; 

boolean[] a4; 

Rectangle[] a5; 

Rectangle[] a6; 

Type Equivalence

Parameterized types in Java 1.5: 
List<int>l1; List<int>l2; List<List<int>>l3;

In C: 
int* p1; int* p2; 

struct {int x;} s1; struct {int x;} s2; 

typedef struct {int x;} S; S s3; S s4;

Name vs Structural Equivalence
Name equivalence: 

two types are equal iff they came from the same textual occurrence 
of a type constructor 

• implement with pointer equality of ResolvedType instances 
• special case: type synonyms (e.g. typedef) don’t define new types 
• e.g. class types, struct types in C, datatypes in ML 

Structural equivalence: 
two types are equal iff they have same structure 
– if atomic types, then obvious 
– if type constructors:

• same constructor 
• recursively, equivalent arguments to constructor 

– implement with recursive implementation of equals, or by 
canonicalization of types when types created then use pointer 
equality 

– e.g. atomic types, array types, record types in ML
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Type Conversions and Coercions

In Java, can explicitly convert an object of 
type double to one of type int 
– can represent as unary operator 
– typecheck, codegen normally 

In Java, can implicitly coerce an object of type 
int to one of type double 
– compiler must insert unary conversion operators, 

based on result of type checking

Type Casts
In C and Java, can explicitly cast an object of one type 

to another 
• sometimes cast means a conversion (casts between numeric 

types) 
• sometimes cast means just a change of static type without 

doing any computation (casts between pointer types or pointer 
and numeric types) 

In C: safety/correctness of casts not checked 
• allows writing low-level code that’s type-unsafe 
• more often used to work around limitations in C’s static type 

system 

In Java: downcasts from superclass to subclass include 
run-time type check to preserve type safety 

• static typechecker allows the cast 
• codegen introduces run-time check 
• Java’s main form of dynamic type checking


