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Lexical Analysis

(Part 1)

Lexical analysis is the first phase of 
compilation: The file is converted from 

ASCII to tokens. It must be fast! 
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Lexical Pass/Scanning

Purpose: Turn the character stream (program 
input) into a token stream

• Token: a group of characters forming a basic, 
atomic unit of syntax, such as a identifier, 
number, etc.

• White space: characters between tokens that 
is ignored
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Why separate lexical / syntactic analysis

Separation of concerns / good design 
– scanner: 

• handle grouping chars into tokens 
• ignore white space 

• handle I/O, machine dependencies 

– parser: 
• handle grouping tokens into syntax trees 

Restricted nature of scanning allows faster 
implementation 
– scanning is time-consuming in many compilers
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Complications to Scanning

• Most languages today are free form
• Layout doesn’t matter
• White space separates tokens

• Alternatives
• Fortran -- line oriented

• Haskell -- indentation and layout can imply grouping

• Separating scanning from parsing is standard
• Alternative: C/C++/Java: type vs identifier

• Parser wants scanner to distinguish between names that 
are types and names that are variables

• But Scanner doesn’t know how things are declared …
done in semantic analysis, a\k\a type checking!

do 10 i = 1,100
...loop code...

10 continue

do 10 i = 1,100
...loop code...

10 continue
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Lexemes, tokens, patterns

Lexeme: group of characters that forms a pattern

Token: class of lexemes matching a pattern
• Token may have attributes if more than one lexeme in a 

token

Pattern: typically defined using regular 
expressions

• REs are the simplest language class that’s powerful 
enough for this purpose  
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Languages and Language Specification

Alphabet: finite set of characters and symbols
String: a finite (possibly empty) sequence of characters 

from an alphabet
Language: a (possibly empty or infinite) set of strings 
Grammar: a finite specification for a set of strings
Language Automaton: an abstract machine accepting 

a set of strings and rejecting all others

A language can be specified by many different 
grammars and automata

A grammar or automaton specifies a single language
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Classes of Languages
Regular languages specified by regular 

expressions/grammars & finite automata 
(FSAs) (or just FAs)

Context-free languages specified by context-free 
grammars and pushdown automata (PDAs)

Turing-computable languages are specified by 
general grammars and Turing machines

regular 
languages

context -free

turing complete

all languages
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Syntax of Regular Expressions

• Defined inductively
– Base cases

• Empty string (ε, ∈)
• Symbol from the alphabet (e.g. x)

– Inductive cases
• Concatenation (sequence of two REs ) : E1E2

• Alternation (choice of two REs): E1 | E2

• Kleene closure (0 or more repetitions of RE): E*

• Notes
– Use parentheses for grouping
– Precedence: * is highest, then concatenate, | is lowest
– White space not significant
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Notational Conveniences

• E+ means 1 or more occurrences of E
• Ek means exactly k occurrences of E
• [E] means 0 or 1 occurrences of E (i.e., optional)

• {E} means 0 or more occurrences of E (aka E*)

• not(x) means any character in alphabet but x
• not(E) means any strings from alphabet 

except those in E
• E1-E2 means any string matching E1 that’s not 

in E2
There is no additional expressive power through these short cuts
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Naming Regular Expressions

Can assign names to regular expressions
Can use the names in regular expressions
Example:

letter ::= a | b | ... | z

digit  ::= 0 | 1 | ... | 9

alphanum ::= letter | digit

Grammar-like notation for regular expression is 
a regular grammar

Can reduce named REs to plain REs by “macro 
expansion”
No recursive definitions allowed as in normal 

context-free grammars
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Using REs to Specify Tokens

Identifiers
ident ::= letter ( digit | letter)*

Integer constants
integer ::= digit+

sign ::= + | -

signed_int ::= [sign] integer

Real numbers
real ::= signed_int [fraction] [exponent]

fraction ::= . digit+

exponent ::= (E | e) signed_int
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More Token Specifications

String and character constants
string ::= " char* "

character ::= ' char '

char ::= not(" | ' | \ ) | escape

escape  ::= \ (" | ' | \ | n | r | t |  v | b | a )

White space
whitespace ::= <space> | <tab> | <newline> | 

comment

comment ::= /* not(*/ )  */
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Meta-Rules
Can define a rule that a legal program is a sequence of 

tokens and white space:
program ::= (token | whitespace)*

token ::= ident | integer | real | string | ...

But this doesn’t say how to uniquely breakup a program 
into its tokens -- it’s highly ambiguous
E.G. what tokens to make out of hi2bob

One identifier, hi2bob?
Three tokens hi 2 bob?
Six tokens, each one character long?

The grammar states that it’s legal, but not how to decide
Apply extra rules to say how to break up a string

Longest sequence wins
Reserved words take precedence over identifiers
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RE Specification of initial MiniJava Lex
Program ::= (Token | Whitespace)* 

Token ::= ID | Integer | ReservedWord | Operator |
Delimiter 

ID ::= Letter (Letter | Digit)* 

Letter ::= a | ... | z | A | ... | Z

Digit ::= 0 | ... | 9

Integer ::= Digit+

ReservedWord::= class | public | static | extends |

void | int | boolean | if | else | 
while |return |true |false | this | new | String

| main | System.out.println

Operator ::= + | - | * | / | < | <= | >= | > | == | 

!= | && | !

Delimiter ::= ; | . | , | = | ( | ) | { | } | [ | ]


