
1

Lexical Analysis

(Part 1)

Lexical analysis is the first phase of
compilation: The file is converted from

ASCII to tokens. It must be fast!

2

Compiler Passes
Analysis

of input program
(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

3

Lexical Pass/Scanning

Purpose: Turn the character stream (program
input) into a token stream

• Token: a group of characters forming a basic,
atomic unit of syntax, such as a identifier,
number, etc.

• White space: characters between tokens that
is ignored

4

Why separate lexical / syntactic analysis

Separation of concerns / good design
– scanner:

• handle grouping chars into tokens
• ignore white space

• handle I/O, machine dependencies

– parser:
• handle grouping tokens into syntax trees

Restricted nature of scanning allows faster
implementation
– scanning is time-consuming in many compilers

5

Complications to Scanning

• Most languages today are free form
• Layout doesn’t matter
• White space separates tokens

• Alternatives
• Fortran -- line oriented

• Haskell -- indentation and layout can imply grouping

• Separating scanning from parsing is standard
• Alternative: C/C++/Java: type vs identifier

• Parser wants scanner to distinguish between names that
are types and names that are variables

• But Scanner doesn’t know how things are declared …
done in semantic analysis, a\k\a type checking!

do 10 i = 1,100
...loop code...

10 continue

do 10 i = 1,100
...loop code...

10 continue

6

Lexemes, tokens, patterns

Lexeme: group of characters that forms a pattern

Token: class of lexemes matching a pattern
• Token may have attributes if more than one lexeme in a

token

Pattern: typically defined using regular
expressions

• REs are the simplest language class that’s powerful
enough for this purpose

2

7

Languages and Language Specification

Alphabet: finite set of characters and symbols
String: a finite (possibly empty) sequence of characters

from an alphabet
Language: a (possibly empty or infinite) set of strings
Grammar: a finite specification for a set of strings
Language Automaton: an abstract machine accepting

a set of strings and rejecting all others

A language can be specified by many different
grammars and automata

A grammar or automaton specifies a single language
8

Classes of Languages
Regular languages specified by regular

expressions/grammars & finite automata
(FSAs) (or just FAs)

Context-free languages specified by context-free
grammars and pushdown automata (PDAs)

Turing-computable languages are specified by
general grammars and Turing machines

regular
languages

context -free

turing complete

all languages

9

Syntax of Regular Expressions

• Defined inductively
– Base cases

• Empty string (ε, ∈)
• Symbol from the alphabet (e.g. x)

– Inductive cases
• Concatenation (sequence of two REs) : E1E2

• Alternation (choice of two REs): E1 | E2

• Kleene closure (0 or more repetitions of RE): E*

• Notes
– Use parentheses for grouping
– Precedence: * is highest, then concatenate, | is lowest
– White space not significant

10

Notational Conveniences

• E+ means 1 or more occurrences of E
• Ek means exactly k occurrences of E
• [E] means 0 or 1 occurrences of E (i.e., optional)

• {E} means 0 or more occurrences of E (aka E*)

• not(x) means any character in alphabet but x
• not(E) means any strings from alphabet

except those in E
• E1-E2 means any string matching E1 that’s not

in E2
There is no additional expressive power through these short cuts

11

Naming Regular Expressions

Can assign names to regular expressions
Can use the names in regular expressions
Example:

letter ::= a | b | ... | z

digit ::= 0 | 1 | ... | 9

alphanum ::= letter | digit

Grammar-like notation for regular expression is
a regular grammar

Can reduce named REs to plain REs by “macro
expansion”
No recursive definitions allowed as in normal

context-free grammars
12

Using REs to Specify Tokens

Identifiers
ident ::= letter (digit | letter)*

Integer constants
integer ::= digit+

sign ::= + | -

signed_int ::= [sign] integer

Real numbers
real ::= signed_int [fraction] [exponent]

fraction ::= . digit+

exponent ::= (E | e) signed_int

3

13

More Token Specifications

String and character constants
string ::= " char* "

character ::= ' char '

char ::= not(" | ' | \) | escape

escape ::= \ (" | ' | \ | n | r | t | v | b | a)

White space
whitespace ::= <space> | <tab> | <newline> |

comment

comment ::= /* not(*/) */

14

Meta-Rules
Can define a rule that a legal program is a sequence of

tokens and white space:
program ::= (token | whitespace)*

token ::= ident | integer | real | string | ...

But this doesn’t say how to uniquely breakup a program
into its tokens -- it’s highly ambiguous
E.G. what tokens to make out of hi2bob

One identifier, hi2bob?
Three tokens hi 2 bob?
Six tokens, each one character long?

The grammar states that it’s legal, but not how to decide
Apply extra rules to say how to break up a string

Longest sequence wins
Reserved words take precedence over identifiers

15

RE Specification of initial MiniJava Lex
Program ::= (Token | Whitespace)*

Token ::= ID | Integer | ReservedWord | Operator |
Delimiter

ID ::= Letter (Letter | Digit)*

Letter ::= a | ... | z | A | ... | Z

Digit ::= 0 | ... | 9

Integer ::= Digit+

ReservedWord::= class | public | static | extends |

void | int | boolean | if | else |
while |return |true |false | this | new | String

| main | System.out.println

Operator ::= + | - | * | / | < | <= | >= | > | == |

!= | && | !

Delimiter ::= ; | . | , | = | (|) | { | } | [|]

