
1

Lexical Analysis

(Part 2)

Lexical analysis is the first phase of
compilation: The file is converted from

ASCII to tokens. It must be fast!

2

Building Scanners with REs

• Convert RE specification into a finite state
automaton (FSA) (aka FA)

• Convert FSA into a scanner implementation
– By hand into a collection of procedures
– Mechanically into a table-driven scanner

3

Finite State Automata
• A Finite State Automaton has

– A set of states
• One marked initial
• Some marked final

– A set of transitions from state to state
• Each labeled with an alphabet symbol or ε

– Operate by beginning at the start state, reading symbols and
making indicated transitions

• If no transition with a matching label is found, re ject
– When input ends, accept if in final state, otherwise reject

/ *

not(*) *

not(*,/)

* /

1 2 43 5/ *

not(*) *

not(*,/)

* /

Our example from class (with state numbers added):

This figure represents a DFA even though it is not complete (i.e., not all
state-character transitions have been drawn). The complete DFA is:

1 2 43 5/ *

not(*)
*

not(*,/)

* /

0

not(*)not(/)

but it is very common to ignore state 0 (called the error state) since it is
implied. The error state serves as a black hole, which doesn't let you escape.

not(εεεε)

Additional Notes

5

Determinism

• FSA can be deterministic or nondeterministic
• Deterministic: always know uniquely which edge to

take
– At most 1 arc leaving a state with a given symbol

– No ε arcs

• Nondeterministic: may need to guess or explore
multiple paths, choosing the right one later

1

0

1

1

0 0

0

6

NFAs vs DFAs

• A problem:
– REs (e.g. specifications) map easily to NFAs
– ...
– Can write code for DFAs easily

• How to bridge the gap?
• Can it be bridged?

2

7

A Solution

• Cool algorithm to translate any NFA to a DFA
– Proves that NFAs aren’t any more expressive

• Plan:
1) Convert RE to NFA
2) Convert NFA to DFA
3) Convert DFA to code

• Can be done by hand or fully automatically

8

RE => NFA

Construct Cases Inductively
ε

x

E1E2

E1 | E2

E*

ε

x

E1 E2ε

E1

E2

ε

ε ε

ε

Eε

ε

ε
ε

9

NFA => DFA

• Subset Construction
– Construct a DFA from the NFA, where each state

in the DFA represents a set of states from the NFA

• Key Idea:
– The state of the DFA after reading some input is

the set of all states the NFA could have reached
after reading the same input.

10

Subset Construction Algorithm (NFA => DFA)
Given NFA with states and transitions:

– label all NFA states uniquely
Create start state of DFA:

– label it with the set of NFA states (e.g. {s1,…,sn}) reachable from the start
state of the NFA by ε transitions, i.e. w/o consuming input.

– Add this new start state to the WorkList.

while (WorkList is not empty) {
Remove a state S with label {s1,…,sn} from the WorkList.
For each symbol x in the alphabet:
– Compute the set {t1,...tm} of NFA states reached from any of the NFA

states in {s1,…,sn} by an x transition (followed by any number of ε
transitions – a.k.a. the E-closure).

– If {t1,...tm} is not empty:
• If a DFA state T labeled {t1,...tm} already exists, add a x transition from S to T.
• Else create new DFA state T labeled {t1,...tm}, add a x transition from S to T,

add T to the WorkList.

}
A DFA state is final iff at least one of the NFA states in its label is

final.

11

Subset
Construction a b/ *

Σ

ε d fc e* /

