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Optimization

Before and after generating machine 
code, devote one or more passes over 
the program to “improve” code quality
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Optimizations

Identify inefficiencies in intermediate or target code 
Replace with equivalent but better sequences 
• equivalent = "has the same externally visible 

behavior" 
Target-independent optimizations best done on IL 

code 
Target-dependent optimizations best done on 

target code 
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The Role of the Optimizer

• The compiler can implement a procedure in many ways
• The optimizer tries to find an implementation that is “better”

– Speed, code size, data space, …

To accomplish this, it
• Analyzes the code to derive knowledge about run-time 

behavior
– Data-flow analysis, pointer disambiguation, …
– General term is “static analysis”

• Uses that knowledge in an attempt to improve the code
– Literally hundreds of transformations have been proposed
– Large amount of overlap between them

Nothing “optimal” about optimization
• Proofs of optimality assume restrictive & unrealistic conditions
• Better goal is to “usually improve”
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Traditional Three-pass Compiler

Middle End does Code Improvement (Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the 

compiled code
– May also improve space, power consumption, …

• Must preserve “meaning” of the code
– Measured by values of named variables
– A course (or two) unto itself

Errors
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The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes
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Kinds of optimizations

Optimizations are characterized by which Transformation 
over what Scope.  Typical scopes are: 
peephole: 

– look at adjacent instructions 

• local: 
– look at straight-line sequence of statements 

• global (intraprocedural): 
– look at entire procedure

• whole program (interprocedural): 
– look across procedures

Larger scope => better optimization but more cost and 
complexity 8

Peephole Optimization

After target code generation, look at adjacent 
instructions (a “peephole” on the code stream) 

– try to replace adjacent instructions with something 
faster 

Example: 
movl %eax, 12(%ebp) 

movl 12(%ebp), %ebx

=>

movl %eax, 12(%ebp) 

movl %eax, %ebx
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Algebraic Simplification

“constant folding”, “strength reduction”
z = 3 + 4; 

z = x + 0; 

z = x * 1; 

z = x * 2; 

z = x * 8; 

z = x / 8; 

double x, y, z; 
z = (x + y) - y; 

Can be done by peephole optimizer, or by code generator
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Local Optimizations

Analysis and optimizations within a basic block 

• Basic block: straight-line sequence of statements 
– no control flow into or out of middle of sequence 

• Better than peephole 
• Not too hard to implement 

Machine-independent, if done on intermediate code
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Local Constant Propagation
If variable assigned a constant value, replace downstream 
uses of the variable with the constant.
Can enable more constant folding 

Example: 
final int count = 10; 
... 
x = count * 5; 
y = x ^ 3; 

Unoptimized intermediate code: 
t1 = 10; 
t2 = 5; 
t3 = t1 * t2; 
x = t3; 
t4 = x; 
t5 = 3; 
t6 = exp(t4, t5); 
y = t6; 
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Local Dead Assignment (Store) Elimination
If l.h.s. of assignment never referenced again before 
being overwritten, then can delete assignment. 

Example: 
final int count = 10; 
... 
x = count * 5; 
y = x ^ 3; 
x = 7; 

Intermediate code after constant propagation: 
t1 = 10; 
t2 = 5; 
t3 = 50; 
x = 50; 
t4 = 50; 
t5 = 3; 
t6 = 125000; 
y = 125000; 
x = 7;

Primary use: clean-up after 
previous optimizations! 
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Local Common Subexpression Elimination
(AKA Redundancy Elimination)

Avoid repeating the same calculation 
• CSE of repeated loads: redundant load elimination 
Keep track of available expressions 

Source: 
... a[i] + b[i] ...

Unoptimized intermediate code: 
t1 = *(fp + ioffset); 

t2 = t1 * 4; 

t3 = fp + t2; 

t4 = *(t3 + aoffset); 

t5 = *(fp + ioffset); 

t6 = t5 * 4; 

t7 = fp + t6; 

t8 = *(t7 + boffset); 

t9 = t4 + t8; 14

Redundancy Elimination Implementation
An expression x+y is redundant if and only if, along every
path from the procedure’s entry, it has been evaluated, and its 
constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant
• It can preserve the results of earlier evaluations
• It can replace the current evaluation with a reference

Two pieces to the problem
• Proving that x+y is redundant
• Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering
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Value Numbering        (An old idea)

The key notion                             (Balke 1968 or Ershov 1954)
• Assign an identifying number, V(n), to each expression

– V(x+y) = V(j) iff x+y and j have the same value ∀ path
– Use hashing over the value numbers to make it efficient

• Use these numbers to improve the code

Improving the code
• Replace redundant expressions
• Simplify algebraic identities
• Discover constant-valued expressions, fold & 

propagate them

This technique was invented for low-level, linear IRs
Equivalent methods exist for trees      (build a DAG ) 16

Local Value Numbering

The Algorithm
For each operation o = <operator, o1, o2> in the block
1 Get value numbers for operands from hash lookup
2 Hash <operator,VN(o1),VN(o2)> to get a value 

number for o
3 If o already had a value number, replace o with a 

reference
4 If o1 & o2 are constant, evaluate it & replace with a 

load

If hashing behaves, the algorithm runs in linear time

Handling algebraic identities
• Case statement on operator type
• Handle special cases within each operator
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Local Value Numbering

Example

With VNs

a3 ← x1 + y2

∗ b3 ← x1 + y2

a4 ← 17
∗ c3 ← x1 + y2

Rewritten

a3 ← x1 + y2

∗ b3 ← a3

a4 ← 17
∗ c3 ← a3 (oops!)

Options:

• Use c3 ← b3

• Save a3 in t3

• Rename around it

Original Code

a ← x + y
∗ b ← x + y
a ← 17

∗ c ← x + y

Two redundancies:

• Eliminate stmts
with a ∗

• Coalesce results ?
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Local Value Numbering

Example (continued)

With VNs

a0
3 ← x0

1 + y0
2

∗ b0
3 ← x0

1 + y0
2

a1
4 ← 17

∗ c0
3 ← x0

1 + y0
2

Notation:

• While complex,
the meaning is
clear

Original Code

a0 ← x0 + y0

∗ b0 ← x0 + y0

a1 ← 17
∗ c0 ← x0 + y0

Renaming:

• Give each value a
unique name

• Makes it clear

Rewritten

a0
3 ← x0

1 + y0
2

∗ b0
3 ← a0

3

a1
4 ← 17

∗ c0
3 ← a0

3

Result:

• a03 is available
• Rewriting just
works 
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Simple Extensions to Value Numbering
Constant folding

• Add a bit that records when a value is constant

• Evaluate constant values at compile-time

• Replace with load immediate or immediate operand

• No stronger local algorithm

Algebraic identities

• Must check (many) special cases

• Replace result with input VN

• Build a decision tree on operation

Identities:           

x←←←←y, x+0, x-0, x∗∗∗∗1, x÷1, x-x, 
x∗∗∗∗0, x÷÷÷÷x, x∨∨∨∨0, x ∧∧∧∧ 0xFF…FF, 
max(x,MAXINT), min(x,MININT), 
max(x,x), min(y,y), and so on ...

With values, not names
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Intraprocedural (Global) optimizations

• Enlarge scope of analysis to entire procedure 
– more opportunities for optimization 
– have to deal with branches, merges, and loops 

• Can do constant propagation, common 
subexpression elimination, etc. at global level 

• Can do new things, e.g. loop optimizations 

Optimizing compilers usually work at this level
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Intraprocedural (Global) Optimizations

Two data structures are commonly used to help analyze 
the of procedure body. 
Control flow graph (CFG) captures flow of control 

– nodes are IL statements, or whole basic blocks 
– edges represent control flow 
– node with multiple successors = branch/switch 
– node with multiple predecessors = merge 
– loop in graph = loop 

Data flow graph (DFG) capture flow of data 
A common one is def/use chains: 

– nodes are def(inition)s and uses 
– edge from def to use 
– a def can reach multiple uses 
– a use can have multiple reaching defs
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Control-flow Graph

Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

– Can be represented with quads or any other linear 
representation

• Edges in the graph represent control flow

Example
if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b
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Data-flow Graph – Use/Def Chains

Models the transfer of data in the procedure
• Nodes in the graph are definitions and uses
• Edges in the graph represent data flow

Example if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

a
a

b

b
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Analysis and Transformation

Each optimization is made up of 
– some number of analyses
– followed by a transformation

Analyze CFG and/or DFG by propagating info forward 
or backward along CFG and/or DFG edges 

– edges called program points
– merges in graph require combining info 
– loops in graph require iterative approximation

Perform improving transformations based on info 
computed 

– have to wait until any iterative approximation has converged 

Analysis must be conservative/safe/sound so that 
transformations preserve program behavior
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Data-flow Analysis
Data-flow analysis is a collection of techniques for 
compile-time reasoning about the run-time flow of values

• Almost always involves building a graph
– Problems are trivial on a basic block
– Global problems ⇒ control-flow graph (or derivative)
– Whole program problems ⇒ call graph (or derivative)

• Usually formulated as a set of simultaneous equations
– Sets attached to nodes and edges
– Lattice (or semilattice) to describe values

• Desired result is usually meet over all paths solution
– “What is true on every path from the entry?”
– “Can this happen on any path from the entry?”
– Related to the safety of optimization
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Data-flow Analysis

Limitations
1.  Precision – “up to symbolic execution”

– Assume all paths are taken

2. Solution – cannot afford to compute MOP solution
– Large class of problems where MOP = MFP= LFP

– Not all problems  of interest are in this class

3. Arrays – treated naively in classical analysis
– Represent whole array with a single fact

4. Pointers – difficult (and expensive) to analyze
– Imprecision rapidly adds up
– Need to ask the right questions

Summary
For scalar values, we can quickly solve simple problems

Good news:

Simple problems can 

carry us pretty far
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Data-flow (Partial) Example

{a,b}{d}b4

0{c}b3

0{b}b2

{b}{a}b1

LiveUseDefBlock

a = 
1

a = 
b

b = 
1

c = 1

d = a + 
b

b1

b2 b3

b4

0{a,b}b4

{a,b}{a,b}b3

{a,b}{a}b2

{b}{b}b1

LiveOutLiveInBlock

LiveOut(b) = U LiveIn(i)
i E Succ(b)

LiveIn(b) = LiveUse(b) U (LiveOut(b) – Def(b))
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Example: Constant Propagation, Folding

Can use either the CFG or the DFG 
CFG analysis info: 

table mapping each variable in scope to one of 
• a particular constant 
• NonConstant
• Undefined

• Transformation: at each instruction: 
– if reference a variable that the table maps to a constant,  

then replace with that constant (constant propagation) 
– if r.h.s. expression involves only constants, and has no side-

effects, then perform operation at compile-time and replace 
r.h.s. with constant result (constant folding) 

For best analysis, do constant folding as part of 
analysis, to learn all constants in one pass
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Example Programx = 3; 

y = x * x; 

v = y - 2; 

if (y > 10) { 

x = 5; 

y = y + 1; 

} else { 
x = 6; 

y = x + 4; 

} 

w = y / v; 

if (v > 20) { 

z = w * w;

x = x - z;

y = y - 1;

} 

System.out.println(x);
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Analysis of Loops
• How to analyze a loop? 

i = 0; 

x = 10; 

y = 20; 

while (...) { 

// what’s true here? 

... 

i = i + 1; 

y = 30; 

} 

// what’s true here? 

... x ... i ... y ...

A safe but imprecise approach: 
• forget everything when we enter or exit a loop 

A precise but unsafe approach: 
• keep everything when we enter or exit a loop 

Can we do better? 
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Loop Terminology 
preheader

entry edge

head

back 
edge

tail

loop

exit edge

32

Optimistic Iterative Analysis

1. Assuming info at loop head is same as info at loop 
entry 

2. Then analyze loop body, computing info at back edge 
3. Merge infos at loop back edge and loop entry 
4. Test if merged info is same as original assumption 

a) If so, then we’re done 

b) If not, then replace previous assumption with merged info, 
and goto step 2

33

Example

i = 0; 

x = 10; 

y = 20; 

while (...) { 
// what’s true here? 

... 

i = i + 1; 
y = 30; } 

// what’s true here? 

... x ... i ... y ...
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Why does optimistic iterative analysis 
work?

Why are the results always conservative? 
Because if the algorithm stops, then 

– the loop head info is at least as conservative as both the  
loop entry info and the loop back edge info 

– the analysis within the loop body is conservative, given the  
assumption that the loop head info is conservative 

Why does the algorithm terminate? 
It might not! 
But it does if: 

– there are only a finite number of times we could merge  
values together without reaching the worst case info (e.g. 
NotConstant)
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Loop Optimization - Code Motion
Goal: move loop-invariant calculations out of loops 
Can do at source level or at intermediate code level 
Source: 

for (i = 0; i < 10; i = i+1) { 

a[i] = a[i] + b[j]; 

z = z + 10000; 

}

Transformed source: 
t1 = b[j]; 

t2 = 10000; 

for (i = 0; i < 10; i = i+1) { 

a[i] = a[i] + t1; 
z = z + t2; 

} 36

Loop Optimization - Induction Variable Elimination

For-loop index is induction variable
• incremented each time around loop 
• offsets & pointers calculated from it 

If used only to index arrays, can rewrite with pointers 
• compute initial offsets/pointers before loop 
• increment offsets/pointers each time around loop 
• no expensive scaling in loop 

Source: 
for (i = 0; i < 10; i = i+1) { 

a[i] = a[i] + x; 
}

Transformed source: 
for (p = &a[0]; p < &a[10]; p = p+4) { 

*p = *p + x; 
}

then do loop-invariant code motion
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Interprocedural (“Whole Program”) Optimizations

• Expand scope of analysis to procedures calling 
each other 

• Can do local & intraprocedural optimizations at 
larger scope 

• Can do new optimizations, e.g. inlining 

38

Inlining

Replace procedure call with body of called procedure 
Source: 

double pi = 3.1415927; 

...
double circle_area(double radius) { 

return pi * (radius * radius); 
} 

... 
double r = 5.0; 

... 
double a = circle_area(r); 

After inlining: 
... 
double r = 5.0; 

... 

double a = pi * r * r;

(Then what?)

39

Summary

Enlarging scope of analysis yields better results 
– today, most optimizing compilers work at the intraprocedural

(global) level 

Optimizations organized as collections of passes, each 
rewriting IL in place into better version 

Presence of optimizations makes other parts of 
compiler (e.g. intermediate and target code generation) 
easier to write
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Additional Material

41

Another example: live variable analysis

Want the set of live variables at each pt. in program 
– live: might be used later in the program

Supports dead assignment elimination, register 
allocation 

What info computed for each program point? 
What is the requirement for this info to be conservative? 
How to merge two infos conservatively? 
How to analyze an assignment, e.g. X := Y + Z? 

– given liveVars before (or after?), what is computed after (or 
before?) 

What is live at procedure entry (or exit?)?

42

Example

x := read()
y := x * 2;
z := sin(y)

return y

y := x + 10;z := z+1



8

43

Peephole Optimization of Jumps
Eliminate jumps to jumps
Eliminate jumps after conditional branches 
“Adjacent” instructions = “adjacent in control flow”
Source code: IL:

if (a < b) { 
if (c < d) {

// do nothing

} else {

stmt1; 
} 

} else { 

stmt2;
} 

44

Global Register Allocation
Try to allocate local variables to registers 
If life times of two locals don’t overlap, can give to same 

register  
Try to allocate most-frequently-used variables to 

registers first 
Example:

int foo(int n, int x) { 

int sum; int i; int t; 
sum = x; 

for (i = n; i > 0; i=i-1) { 

sum = sum + i; 

} 
t = sum * sum; 

return t; 

}
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Handling Larger Scopes

Extended Basic Blocks

• Initialize table for bi with table from bi-1

• With single-assignment naming, can use scoped hash table

b4 b5

b6

b1

b3b2

The Plan:
Process b1, b2, b4
Pop two levels
Process b3 relative to b1
Start clean with b5
Start clean with b6

→

→
→

→

Using a scoped table makes doing 
the full tree of EBBs that share 
a common header efficient.

Otherwise, it is complex

46

Handling Larger Scopes

To go further, we must deal with merge points
• Our simple naming scheme falls apart in b4

• We need more powerful analysis tools
• Naming scheme becomes SSA

This requires global data-flow analysis

“Compile-time reasoning about the run-time flow of values”

1 Build a model of control-flow
2 Pose questions as sets of simultaneous equations
3 Solve the equations
4 Use solution to transform the code

Examples: LIVE, REACHES, AVAIL

b1

b2 b3

b4


