CSE 401 — Compilers

Lecture 20: x86-64, GNU Assembler, and Project
Code Generation, Part

Michael Ringenburg
Winter 2013

9 Reminders/
Announcements

* Midterms are graded

— If you haven’t picked yours up yet, you can stop
by during my office hours today (2:30-3:30)

* Project part 3 due this Friday

* Part 4 will be due on Friday, March 15 (last
day of class). | will put the assignment out this
afternoon.

e Laure out of town next week — no office hours.

Winter 2013 UW CSE 401 (Michael Ringenburg) 2

Review: boot.c

* We will provide a small bootstrap named boot.c with the
part 4 assignment.
— Atiny C program that calls your compiled code as if it were an
ordinary C function (assumes your main label is asm_main).
* [t also contains some functions that compiled code can call
as needed
— This is a mini “runtime library”

* Leverages gcc’s C runtime for program startup/initialization, 1/0,
memory management, etc.

* A tiny Minilava interface layer on top for access to input, output,
memory allocation

— Add to this if you like

* Sometimes simpler to generate a call to a newly written library
routine instead of generating in-line code

Winter 2013 UW CSE 401 (Michael Ringenburg)

w

#include <stdio.h>

extern void asm_main(); /* label for your compiled code */

/* execute compiled program */

void main() { asm_main(); }

/* return next integer from standard input */

long get() { ... }

/* write x to standard output */

void put(long x) { ... }

/* return a pointer to a block of memory at least nBytes large (or null
if insufficient memory available) */

char* mjmalloc(long nBytes) { return malloc(nBytes); }

Winter 2013 UW CSE 401 (Michael Ringenburg) 4

Review: Library Calls

* To call these library functions (get, put, mjmalloc, and
anything you might add), just follow x86-64 calling
conventions. On Linux, call target label is just the function
name (Windows and OS X add a preceding _).

* E.g., acode template for System.out.printin(exp)
(MiniJava’s “print” statement) might be:

<compile exp; result in %rax>

movq %rax,%rdi ; load argument register
call put ; call external put routine

* If the stack is not kept 16-byte aligned, calls to external C or
library code are the most likely place for a runtime error

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

9 Assembler File Format

* GNU .s file syntax is roughly this (sample code will be provided with
part 4 of the project)

text # code segment

.globl asm_main # label for main program
asm_main: # start of compiled “main”
class1Smethod1: # code for additional methods

.data # generated method tables

generated method tables

generated method tables
repeat .text/.data as needed

Winter 2013 UW CSE 401 (Michael Ringenburg) 6

Winter 2013 UW CSE 401 (Michael Ringenburg) 7

9 Generating .asm Code

* Suggestion: isolate the actual assmebly output
operations in a handful of routines

— Modularity & saves some typing

— Possibilities
// write code string s to .asm output
void gen(String s) { ... }
// write “op src,dst” to .asm output
void genbin(String op, String src, String dst) { ... }
// write label L to .asm output as “L:”
void genlabel(String L) { ... }

— A handful of these methods should do it

Winter 2013 UW CSE 401 (Michael Ringenburg) 8

Q A Simple Code
Generation Strategy

* Goal: quick ‘n dirty correct code, optimize later if time
* Traverse AST primarily in execution order and emit
code during the traversal

— Visitor may traverse the tree in ad-hoc ways depending on
sequence that parts need to appear in the code (based on
code recipes/templates we studied for particular syntax
constructs/AST nodes).

* Treat the x86 as a 1-register machine with a stack for
additional intermediate values

— Except for function calls (due to register-based calling
convention on x86-64)

— Don’t have to worry about register allocation

Winter 2013 UW CSE 401 (Michael Ringenburg) 9

’ Simplifying Assumption

 Store all values (reference, int, boolean) in 64-
bit quadwords
— Natural size for 64-bit pointers, i.e., object
references (variables of class types)
— C’'s “long” size for integers
— Means you won’t necessarily get the right

overflow behavior for ints (supposed to be 32-bit
in Java), but that is okay (you’ll still get full credit).

* MiniJava was originally designed for 32-bit machines.

Winter 2013 UW CSE 401 (Michael Ringenburg) 10

’ x86 as a Stack Machine

* |dea: Use x86-64 stack for expression evaluation with %rax as
the “top” of the stack
* Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the generated code leaves the result in
%rax
* If avalue needs to be preserved while another expression is
evaluated, push %rax, evaluate, then pop when first value is
needed
— Remember: always pop what you push
— Will produce lots of redundant, but correct, code
* Examples below follow code shape examples, but with some
details about where code generation fits

Winter 2013 UW CSE 401 (Michael Ringenburg) 11

Example: Generate Code for /g '
Constants and Identifiers °

* |Integer constants, say 17

gen(“movq $17,%rax”)
¢ |leaves value in %rax

* Local variables (any type —int, bool, reference)
gen(“movq offset(%rbp),%rax”)

— Recall simplifying assumption that everything is 64-bit
in MiniJava

Winter 2013 UW CSE 401 (Michael Ringenburg) 12

Example: Generate Code for /m
expl + exp2

— Visit expl

* generate code to evaluate expl with result in %rax
— gen(“pushq %rax”)

* push expl result onto stack
— Visit exp2

* generate code for exp2; result in %rax
— gen(“popg %rdx”)

* pops expl result into %rdx (also cleans up stack)
— gen(“addq %rdx,%rax”)

* perform the addition; result in %rax

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

9 Example: var = exp; (1)

* Assuming that var is a local variable

— Visit node for exp

* Generates code that leaves the result of evaluating exp
in %rax

— gen(“movq %rax,offset_of variable(%rbp)”)

Winter 2013 UW CSE 401 (Michael Ringenburg) 14

’ Example: Simple main()

* With this, we can now generate code for a simple
main method:

public static void main() {

int x;
X=05;
System.out.printin(x + 1);
Winter 2013 UW CSE 401 (Michael Ringenburg) 15

9 Possible AST

’ MainMethodDecl ‘ pL.Jb:iC static void main() {
int x;

{

DeclList Statement x=5;

System.out.printin(x + 1);

Winter 2013 UW CSE 401 (Michael Ringenburg) 16

Possible AST

#prologue
push %rbp
movqg %rsp,%rbp

0,
DeclList Statement subq $16,%rsp

/

You'll likely have a method to
generate prologues, e.g.,
genPrologue(int numLocals).
Call it before generating the
method’s statement list.
Also, recall suggestion to
round up frame size to
multiples of 16.

’ MainMethodDecl ‘

Winter 2013 UW CSE 401 (Michael Ringenburg) 17

Possible AST

#prologue
push %rbp
movqg %rsp,%rbp

0,
DeclList Statement subg 516,%rsp

#Assign right: 5
Blom movq $5,%rax

’ MainMethodDecl ‘

Winter 2013 UW CSE 401 (Michael Ringenburg) 18

Possible AST

#prologue
push %rbp
movqg %rsp,%rbp

DeclList Statement subq 516,%rsp

#Assign right: 5

’ MainMethodDecl ‘

Blom movq $5,%rax
#Assign
’Assign }—ﬁ Print ‘ movq %rax,-8(%rbp)
Winter 2013 UW CSE 401 (Michael Ringenburg) 19

Possible AST

#prologue
push %rbp
movqg %rsp,%rbp

DeclList Statement subg 516,%rsp

#Assign right: 5

’ MainMethodDecl ‘

Blom movq $5,%rax
#Assign
’Assign H Print ‘ movq %rax,-8(%rbp)
#Print exp
#Plus expl

movq -8(%rbp),%rax
pushq %rax

Winter 2013 UW CSE 401 (Michael Ringenburg) 20

>

’ MainMethodDecl ‘

Possible AST

DeclList Statement
Blom

’Assign }—ﬁ Print ‘

Winter 2013

UW CSE 401 (Michael Ringenburg)

#Plus expl
movq -8(%rbp),%rax
pushq %rax

#Plus exp2
movq $1,%rax

21

>

’ MainMethodDecl ‘

Possible AST

DeclList State@
Blom

Winter 2013

UW CSE 401 (Michael Ringenburg)

#Plus expl
movq -8(%rbp),%rax
pushq %rax

#Plus exp2
movq $1,%rax

#Plus

popq %rdx
addq %rdx,%rax

22

Possible AST

’ MainMethodDecl ‘

#Plus expl

movq -8(%rbp),%rax

DeclList Statement pushq %rax
#Plus exp2
Blom movq $1,%rax
#Plus
’Assign }—ﬁ Print ‘ popq %rdx
I/ \I addq %rdx,%rax
X 5
. . #Print
movq %rax,%rdi
call put
Winter 2013 UW CSE 401 (Michael Ringenburg) 23
Possible AST
’ MainMethodDecl ‘ ;Print

DeclList

Winter 2013

movq %rax,%rdi

\EM call put

#Epilogue
Blom leave
ret

’Assign H Print ‘ /

Generate epilogue after
statements.

UW CSE 401 (Michael Ringenburg)

24

Suggestion

* Build your code generator incrementally.
— Start with enough functionality to compile very simple programs.

— Then, add functionality to compile slightly more complex
programs.

— Rinse Test (thoroughly) and repeat.
* The last step is key.

— Debugging code generators is hard (basically, it comes down to
debugging assembly code).

— By doing small pieces, and testing thoroughly after each one, you
make your life much easier.

* The assignment will have a (time-tested) approach to
incrementally building your code generator.

Winter 2013 UW CSE 401 (Michael Ringenburg) 25

9 Example: var = exp; (2)

* If var is a more complex expression (object or array
reference, for example)
— visit var

* Since it’s going to be used as a store target, you want to evaluate
the address, not the value. For objects this may be default, but
probably not fields/array elements.

* Minilava has a limited set of “var” possibilities, so you could
possibly special case them if you wanted.

— gen(pushq %rax)
* push address of object/field/array element/etc
— visit exp — leaves rhs value in %rax
— gen(popq %rdx)
— gen(movq %rax,appropriate_offset(%rdx))

Winter 2013 UW CSE 401 (Michael Ringenburg) 26

Example: Generate Code for /m
obj.f(el,e2,...en)

* In principal the code should work like this:
— Visit obj
* leaves reference to object in %rax
— gen(“movq %rax,rdi”)
* “this” pointer is first argument
— Visit el, e2, ..., en. For each argument,
* gen(“movqg %rax,correct_argument_register”)
— generate code to load method table pointer located
at 0(%rdi) into register like %rax
* gen(“movq (%rdi),%rax”)
— generate call instruction with indirect jump
* gen(“call *M(%rax)”), where M is offset of f in method table

Winter 2013 UW CSE 401 (Michael Ringenburg) 27

Method Call
Complications

* Big one: code to evaluate any argument might clobber
argument registers (i.e., method call in some parameter
value)

— Possible strategy to cope on next slides, other solutions may be
possible

* Not quite so bad: what if a method has more than 6
parameters?

— Traditionally, supporting extra parameters hasn’t been required
in this course, so | won’t either.

— Not hard, and a reasonable extension to attempt for some extra
credit.

— Requires extra bookkeeping in caller and callee (especially when
combined with our strategy for dealing with the above issue,
due to evaluation order rules).

Winter 2013 UW CSE 401 (Michael Ringenburg) 28

>

Method Calls in
Parameters

» Suggestion to avoid trouble:
— Evaluate parameters and push them on the stack

— Right before the call instruction, pop the parameters
into the correct registers

Winter 2013

Works if we are dealing with at most 6 parameters.

If attempting extension: later parameters should be
evaluated after earlier parameters, so parameters 7+ will
normally be in the way of popping first 6.

Could use free registers to hold them temporarily, and
repush (but requires a register allocator to track free regs).

Or could leave all the parameters in storage and copy the
first 6 into registers, then deallocate everything after return

But....

UW CSE 401 (Michael Ringenburg) 29

9 Stack Alignment (1)

* Above strategy works provided we don’t call a
method while an odd number of parameter
values are pushed on the stack!

— (violates 16-byte alignment on method call...)

* We have a similar problem if an odd number
of intermediate/temporary values are pushed
on the stack when we call a function in the
middle of evaluating an expression

Winter 2013

UW CSE 401 (Michael Ringenburg) 30

’ Stack Alignment (2)

* Workable solution: keep a counter in the code
generator of how much has been pushed on the
stack. If needed, gen(pushq %eax) to align the
stack before generating a call instruction

— Be sure to generate a popq afterwards, iff you pushed
* Another solution: make stack frame big enough

and use movq instead of pushq to store

arguments and temporaries

— What most real compilers do — also frees up %rbp

— Will need some extra bookkeeping to allocate space
for arguments and temporaries

Winter 2013 UW CSE 401 (Michael Ringenburg) 31

’ In Summary ...

* Multiple registers for method arguments is a
big win compared to pushing on the stack, but
complicates our life since we do not have a
fancy register allocator

* For project, you are only required to handle
up to 6 parameters.

— But you may try to do more as an extension, if you
wish.

Winter 2013 UW CSE 401 (Michael Ringenburg) 32

’ Code Gen for Method
Definitions
* Generate label for method
* ClassnameSmethodname:
* Walk list of declarations
— Assign offsets from %rbp for each local: -8, -16, -24, etc. Store
in variable’s symbol table entry.
* Generate method prologue
* Push rbp, copy rsp to rbp, subtract frame size from rsp

* Visit statements in order

— Method epilogue is normally generated as part of each return
statement (or return statements branch to epilogue)
— In MiniJava the return is generated after visiting the method
body to generate its code
* MiniJava only allows a single return at the end of the method.
* Main special case: Generate epilogue without return

Winter 2013 UW CSE 401 (Michael Ringenburg) 33

’ Example: return exp;

* Visit exp; leaves result in %rax where it
should be

* Generate method epilogue to unwind the
stack frame; end with ret instruction

Winter 2013 UW CSE 401 (Michael Ringenburg) 34

Control Flow:
Unique Labels

* Needed: a String-valued method that returns
a different label each time it is called (e.g., L1,
L2, L3, ...)

— Allows us to create unique labels for control flow.

— Variation: a set of methods that generate
different kinds of labels for different constructs
(can really help readability of the generated code)

* (whilel, while2, while3, ...; if1, if2, ...; elsel, else2, ...;
fi1, fi2,)

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

Control Flow: Tests

* Recall that the context for compiling a boolean
expression is

— Label or address of jump target
— Whether to jump if true or false

* So the visitor for a boolean expression should receive
this information from the parent node

— There’s a few ways you can do this

* Visitor object can store state: parent can store for child. Make
sure visit method remembers the state when it was called (may
make nested calls with different state, e.g. x <y && x < z, or lexp).

* Or, can augment the accept/visit methods for expressions to pass
additional parameters — and pass null state (or whatever) for non-
boolean expressions, since it shouldn’t be used.

* Or, have parent visitor store context in child’s AST node.

Winter 2013 UW CSE 401 (Michael Ringenburg) 36

’ Example: while(exp) body

* Assuming we want the test at the bottom of
the generated loop...
— gen(jmp testLabel)
— gen(bodylLabel:)
— visit body
— gen(testLabel:)

— visit exp (condition) with target=bodylLabel and
sense="“jump if true”

Winter 2013 UW CSE 401 (Michael Ringenburg) 37

’ Example: expl < exp2

* Similar to other binary operators

» Difference: context is a target label and whether to
jump if true or false
* Code
— visit expl
— gen(pushq %rax)
— visit exp2
— gen(popq %rdx)
— gen(cmpq %rdx,%rax)

— gen(condjump targetLabel)
* appropriate conditional jump (jl, jnl) depending on sense of test

Winter 2013 UW CSE 401 (Michael Ringenburg) 38

Boolean Operators

* && (and || if you include it)

— Follow the same recipes as the 1A-32 examples from
last week, except in Gnu x86-64

— Create label needed to skip around the two parts of
the expression

— Generate subexpressions with appropriate target
labels and conditions

* lexp

— Generate exp with same target label, but reverse the
sense of the condition

Winter 2013 UW CSE 401 (Michael Ringenburg) 39

Join Points

* Loops and conditional statements have join points where execution
paths merge
* Generated code must ensure that machine state will be consistent
regardless of which path is taken to reach a join point
— i.e., the paths through an if-else statement must not leave a different
number of words pushed onto the stack
— If we want a particular value in a particular register at a join point,
both paths must put it there, or we need to generate additional code
to move the value to the correct register
* With a simple 1-accumulator model of code generation, this should
generally be true without needing extra work; with better use of
registers this becomes an issue

— Stack of temporary values should be empty after each statement

Winter 2013 UW CSE 401 (Michael Ringenburg) 40

’ And That’s It...

* We've now got enough on the table to
complete the compiler project
* Coming Attractions

— Survey of optimization: analysis and
transformations

— More sophisticated code generation
— Two guest lectures:

* Real-world parsing (it’s not just for compilers!)
* Real register allocators
* Yes, they will be on the final ©

Winter 2013 UW CSE 401 (Michael Ringenburg)

41

