CSE 401 — Compilers

Lecture 20: x86-64, GNU Assembler, and Project
Code Generation, Part

Michael Ringenburg
Winter 2013

9 Reminders/
Announcements

* Midterms are graded

— If you haven’t picked yours up yet, you can stop
by during my office hours today (2:30-3:30)

* Project part 3 due this Friday

* Part 4 will be due on Friday, March 15 (last
day of class). | will put the assignment out this
afternoon.

e Laure out of town next week — no office hours.
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Review: boot.c

* We will provide a small bootstrap named boot.c with the
part 4 assignment.
— Atiny C program that calls your compiled code as if it were an
ordinary C function (assumes your main label is asm_main).
* [t also contains some functions that compiled code can call
as needed
— This is a mini “runtime library”

* Leverages gcc’s C runtime for program startup/initialization, 1/0,
memory management, etc.

* A tiny Minilava interface layer on top for access to input, output,
memory allocation

— Add to this if you like

* Sometimes simpler to generate a call to a newly written library
routine instead of generating in-line code
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#include <stdio.h>

extern void asm_main(); /* label for your compiled code */

/* execute compiled program */

void main() { asm_main(); }

/* return next integer from standard input */

long get() { ... }

/* write x to standard output */

void put(long x) { ... }

/* return a pointer to a block of memory at least nBytes large (or null
if insufficient memory available) */

char* mjmalloc(long nBytes) { return malloc(nBytes); }
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Review: Library Calls

* To call these library functions (get, put, mjmalloc, and
anything you might add), just follow x86-64 calling
conventions. On Linux, call target label is just the function
name (Windows and OS X add a preceding _).

* E.g., acode template for System.out.printin(exp)
(MiniJava’s “print” statement) might be:

<compile exp; result in %rax>

movq  %rax,%rdi ; load argument register
call put ; call external put routine

* If the stack is not kept 16-byte aligned, calls to external C or
library code are the most likely place for a runtime error
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9 Assembler File Format

* GNU .s file syntax is roughly this (sample code will be provided with
part 4 of the project)

text # code segment

.globl asm_main # label for main program
asm_main: # start of compiled “main”
class1Smethod1: # code for additional methods

.data # generated method tables

# generated method tables

# generated method tables
# repeat .text/.data as needed
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9 Generating .asm Code

* Suggestion: isolate the actual assmebly output
operations in a handful of routines

— Modularity & saves some typing

— Possibilities
// write code string s to .asm output
void gen(String s) { ... }
// write “op src,dst” to .asm output
void genbin(String op, String src, String dst) { ... }
// write label L to .asm output as “L:”
void genlabel(String L) { ... }

— A handful of these methods should do it
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Q A Simple Code
Generation Strategy

* Goal: quick ‘n dirty correct code, optimize later if time
* Traverse AST primarily in execution order and emit
code during the traversal

— Visitor may traverse the tree in ad-hoc ways depending on
sequence that parts need to appear in the code (based on
code recipes/templates we studied for particular syntax
constructs/AST nodes).

* Treat the x86 as a 1-register machine with a stack for
additional intermediate values

— Except for function calls (due to register-based calling
convention on x86-64)

— Don’t have to worry about register allocation
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’ Simplifying Assumption

 Store all values (reference, int, boolean) in 64-
bit quadwords
— Natural size for 64-bit pointers, i.e., object
references (variables of class types)
— C’'s “long” size for integers
— Means you won’t necessarily get the right

overflow behavior for ints (supposed to be 32-bit
in Java), but that is okay (you’ll still get full credit).

* MiniJava was originally designed for 32-bit machines.
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’ x86 as a Stack Machine

* |dea: Use x86-64 stack for expression evaluation with %rax as
the “top” of the stack
* Invariant: Whenever an expression (or part of one) is
evaluated at runtime, the generated code leaves the result in
%rax
* If avalue needs to be preserved while another expression is
evaluated, push %rax, evaluate, then pop when first value is
needed
— Remember: always pop what you push
— Will produce lots of redundant, but correct, code
* Examples below follow code shape examples, but with some
details about where code generation fits
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Example: Generate Code for /g '
Constants and Identifiers °

* |Integer constants, say 17

gen(“movq $17,%rax”)
¢ |leaves value in %rax

* Local variables (any type —int, bool, reference)
gen(“movq offset(%rbp),%rax”)

— Recall simplifying assumption that everything is 64-bit
in MiniJava
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Example: Generate Code for /m
expl + exp2

— Visit expl

* generate code to evaluate expl with result in %rax
— gen(“pushq %rax”)

* push expl result onto stack
— Visit exp2

* generate code for exp2; result in %rax
— gen(“popg %rdx”)

* pops expl result into %rdx (also cleans up stack)
— gen(“addq %rdx,%rax”)

* perform the addition; result in %rax
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9 Example: var = exp; (1)

* Assuming that var is a local variable

— Visit node for exp

* Generates code that leaves the result of evaluating exp
in %rax

— gen(“movq %rax,offset_of variable(%rbp)”)
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’ Example: Simple main()

* With this, we can now generate code for a simple
main method:

public static void main() {

int x;
X=05;
System.out.printin(x + 1);
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9 Possible AST

’ MainMethodDecl ‘ pL.Jb:iC static void main() {
int x;

{

DeclList Statement x=5;

System.out.printin(x + 1);
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Possible AST

#prologue
push  %rbp
movqg  %rsp,%rbp

0,
DeclList Statement subq  $16,%rsp

/

You'll likely have a method to
generate prologues, e.g.,
genPrologue(int numLocals).
Call it before generating the
method’s statement list.
Also, recall suggestion to
round up frame size to
multiples of 16.

’ MainMethodDecl ‘
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Possible AST

#prologue
push  %rbp
movqg  %rsp,%rbp

0,
DeclList Statement subg 516,%rsp

#Assign right: 5
Blom movq $5,%rax

’ MainMethodDecl ‘
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Possible AST

#prologue
push  %rbp
movqg  %rsp,%rbp

DeclList Statement subq  516,%rsp

#Assign right: 5

’ MainMethodDecl ‘

Blom movq $5,%rax
#Assign
’Assign }—ﬁ Print ‘ movq %rax,-8(%rbp)
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Possible AST

#prologue
push  %rbp
movqg  %rsp,%rbp

DeclList Statement subg 516,%rsp

#Assign right: 5

’ MainMethodDecl ‘

Blom movq $5,%rax
#Assign
’Assign H Print ‘ movq %rax,-8(%rbp)
#Print exp
#Plus expl

movq -8(%rbp),%rax
pushq %rax
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>

’ MainMethodDecl ‘

Possible AST

DeclList Statement
Blom

’Assign }—ﬁ Print ‘

Winter 2013
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#Plus expl
movq -8(%rbp),%rax
pushq %rax

#Plus exp2
movq $1,%rax

21

>

’ MainMethodDecl ‘

Possible AST

DeclList State@
Blom
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#Plus expl
movq -8(%rbp),%rax
pushq %rax

#Plus exp2
movq $1,%rax

#Plus

popq %rdx
addq %rdx,%rax
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Possible AST

’ MainMethodDecl ‘

#Plus expl

movq -8(%rbp),%rax

DeclList Statement pushq %rax
#Plus exp2
Blom movq $1,%rax
#Plus
’Assign }—ﬁ Print ‘ popq %rdx
I/ \I addq %rdx,%rax
X 5
. . #Print
movq %rax,%rdi
call put
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Possible AST
’ MainMethodDecl ‘ ;Print

DeclList

Winter 2013

movq %rax,%rdi

\EM call put

#Epilogue
Blom leave
ret

’Assign H Print ‘ /

Generate epilogue after
statements.
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Suggestion

* Build your code generator incrementally.
— Start with enough functionality to compile very simple programs.

— Then, add functionality to compile slightly more complex
programs.

— Rinse Test (thoroughly) and repeat.
* The last step is key.

— Debugging code generators is hard (basically, it comes down to
debugging assembly code).

— By doing small pieces, and testing thoroughly after each one, you
make your life much easier.

* The assignment will have a (time-tested) approach to
incrementally building your code generator.
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9 Example: var = exp; (2)

* If var is a more complex expression (object or array
reference, for example)
— visit var

* Since it’s going to be used as a store target, you want to evaluate
the address, not the value. For objects this may be default, but
probably not fields/array elements.

* Minilava has a limited set of “var” possibilities, so you could
possibly special case them if you wanted.

— gen(pushq %rax)
* push address of object/field/array element/etc
— visit exp — leaves rhs value in %rax
— gen(popq %rdx)
— gen(movq %rax,appropriate_offset(%rdx))
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Example: Generate Code for /m
obj.f(el,e2,...en)

* In principal the code should work like this:
— Visit obj
* leaves reference to object in %rax
— gen(“movq %rax,rdi”)
* “this” pointer is first argument
— Visit el, e2, ..., en. For each argument,
* gen(“movqg %rax,correct_argument_register”)
— generate code to load method table pointer located
at 0(%rdi) into register like %rax
* gen(“movq (%rdi),%rax”)
— generate call instruction with indirect jump
* gen(“call *M(%rax)”), where M is offset of f in method table
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Method Call
Complications

* Big one: code to evaluate any argument might clobber
argument registers (i.e., method call in some parameter
value)

— Possible strategy to cope on next slides, other solutions may be
possible

* Not quite so bad: what if a method has more than 6
parameters?

— Traditionally, supporting extra parameters hasn’t been required
in this course, so | won’t either.

— Not hard, and a reasonable extension to attempt for some extra
credit.

— Requires extra bookkeeping in caller and callee (especially when
combined with our strategy for dealing with the above issue,
due to evaluation order rules).
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>

Method Calls in
Parameters

» Suggestion to avoid trouble:
— Evaluate parameters and push them on the stack

— Right before the call instruction, pop the parameters
into the correct registers

Winter 2013

Works if we are dealing with at most 6 parameters.

If attempting extension: later parameters should be
evaluated after earlier parameters, so parameters 7+ will
normally be in the way of popping first 6.

Could use free registers to hold them temporarily, and
repush (but requires a register allocator to track free regs).

Or could leave all the parameters in storage and copy the
first 6 into registers, then deallocate everything after return

But....
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9 Stack Alignment (1)

* Above strategy works provided we don’t call a
method while an odd number of parameter
values are pushed on the stack!

— (violates 16-byte alignment on method call...)

* We have a similar problem if an odd number
of intermediate/temporary values are pushed
on the stack when we call a function in the
middle of evaluating an expression

Winter 2013
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’ Stack Alignment (2)

* Workable solution: keep a counter in the code
generator of how much has been pushed on the
stack. If needed, gen(pushq %eax) to align the
stack before generating a call instruction

— Be sure to generate a popq afterwards, iff you pushed
* Another solution: make stack frame big enough

and use movq instead of pushq to store

arguments and temporaries

— What most real compilers do — also frees up %rbp

— Will need some extra bookkeeping to allocate space
for arguments and temporaries
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’ In Summary ...

* Multiple registers for method arguments is a
big win compared to pushing on the stack, but
complicates our life since we do not have a
fancy register allocator

* For project, you are only required to handle
up to 6 parameters.

— But you may try to do more as an extension, if you
wish.
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’ Code Gen for Method
Definitions
* Generate label for method
* ClassnameSmethodname:
* Walk list of declarations
— Assign offsets from %rbp for each local: -8, -16, -24, etc. Store
in variable’s symbol table entry.
* Generate method prologue
* Push rbp, copy rsp to rbp, subtract frame size from rsp

* Visit statements in order

— Method epilogue is normally generated as part of each return
statement (or return statements branch to epilogue)
— In MiniJava the return is generated after visiting the method
body to generate its code
* MiniJava only allows a single return at the end of the method.
* Main special case: Generate epilogue without return
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’ Example: return exp;

* Visit exp; leaves result in %rax where it
should be

* Generate method epilogue to unwind the
stack frame; end with ret instruction
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Control Flow:
Unique Labels

* Needed: a String-valued method that returns
a different label each time it is called (e.g., L1,
L2, L3, ...)

— Allows us to create unique labels for control flow.

— Variation: a set of methods that generate
different kinds of labels for different constructs
(can really help readability of the generated code)

* (whilel, while2, while3, ...; if1, if2, ...; elsel, else2, ...;
fi1, fi2, ....)
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Control Flow: Tests

* Recall that the context for compiling a boolean
expression is

— Label or address of jump target
— Whether to jump if true or false

* So the visitor for a boolean expression should receive
this information from the parent node

— There’s a few ways you can do this

* Visitor object can store state: parent can store for child. Make
sure visit method remembers the state when it was called (may
make nested calls with different state, e.g. x <y && x < z, or lexp).

* Or, can augment the accept/visit methods for expressions to pass
additional parameters — and pass null state (or whatever) for non-
boolean expressions, since it shouldn’t be used.

* Or, have parent visitor store context in child’s AST node.
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’ Example: while(exp) body

* Assuming we want the test at the bottom of
the generated loop...
— gen(jmp testLabel)
— gen(bodylLabel:)
— visit body
— gen(testLabel:)

— visit exp (condition) with target=bodylLabel and
sense="“jump if true”
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’ Example: expl < exp2

* Similar to other binary operators

» Difference: context is a target label and whether to
jump if true or false
* Code
— visit expl
— gen(pushq %rax)
— visit exp2
— gen(popq %rdx)
— gen(cmpq %rdx,%rax)

— gen(condjump targetLabel)
* appropriate conditional jump (jl, jnl) depending on sense of test
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Boolean Operators

* && (and || if you include it)

— Follow the same recipes as the 1A-32 examples from
last week, except in Gnu x86-64

— Create label needed to skip around the two parts of
the expression

— Generate subexpressions with appropriate target
labels and conditions

* lexp

— Generate exp with same target label, but reverse the
sense of the condition
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Join Points

* Loops and conditional statements have join points where execution
paths merge
* Generated code must ensure that machine state will be consistent
regardless of which path is taken to reach a join point
— i.e., the paths through an if-else statement must not leave a different
number of words pushed onto the stack
— If we want a particular value in a particular register at a join point,
both paths must put it there, or we need to generate additional code
to move the value to the correct register
* With a simple 1-accumulator model of code generation, this should
generally be true without needing extra work; with better use of
registers this becomes an issue

— Stack of temporary values should be empty after each statement
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’ And That’s It...

* We've now got enough on the table to
complete the compiler project
* Coming Attractions

— Survey of optimization: analysis and
transformations

— More sophisticated code generation
— Two guest lectures:

* Real-world parsing (it’s not just for compilers!)
* Real register allocators
* Yes, they will be on the final ©
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