CSE 401 — Compilers

Lecture 6: LR Parsing (part 1)
Michael Ringenburg
Winter 2013

’ Reminders/
Announcements

* Homework 1 is due TODAY, 11:59pm

* No class or office hours on Monday (MLK day)

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Agenda

* Finish discussing the “if-else” ambiguity

* Start our first parsing algorithm: LR Parsing

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Reminder: “if-else”
ambiguity

 Grammar for conditional statements
stmt ::=if (cond) stmt

| if (cond) stmt else stmt

e This is ambiguous
— Consider
if (a) if (b) sl else s2

Winter 2013 UW CSE 401 (Michael Ringenburg)

Derive if(cl1) if(c2) s1 else s2

stmt stmt

if (cond) stmt if/w‘N

if (cl) stmt c,1 stmt

if (cl)if (cond) stmt else stmt — 7 N

if cond stmt else stmt

o : | | |
if (c1)if (c2)slelses2
(cl)if(c2) c2 sl s2

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

Winter 2013 UW CSE 401 (Michael Ringenburg)

Derive if(cl1) if(c2) s1 else s2

stmt stmt
/N
if (cond) stmt else stmt if cond stmt else stmt
if (c1) stmt else stmt i cond stmt]
S
if (c1) if (cond) stmt else stmt ‘ \
c2 sl

if (1) if (2) s1 else 52

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Compare Parse Trees

stmt stmt
T R

if cond if cond stmt else stmt

! { AN\

cl stmt €l it cond stmt
e N | | s2
if cond stmt else stmt) sl

| | |

c2 sl s2

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Solving “if” Ambiguity

* Fix the grammar to separate if statements
with else clause and if statements with no else

— Done in Java reference grammar
— Adds lots of non-terminals
* or, Change the language
— But it’d better be ok to do this
* or, Use some ad-hoc rule in the parser
— “else matches closest unpaired if”

Winter 2013 UW CSE 401 (Michael Ringenburg)

Resolving Ambiguity with
Grammar

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::=... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

— Prevents if-without-else as then clause of if-then-
else, forcing else to match closest if. But, can still
generate exact same language (try it!)

— formal, no additional rules beyond syntax

Winter 2013 UW CSE 401 (Michael Ringenburg)

Check: if (c1) if (c2) stmt else stmt

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::=... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

Winter 2013 UW CSE 401 (Michael Ringenburg)

Resolving Ambiguity with
Grammar (2)

* If you can (re-)design the language, can avoid the problem
entirely, e.g., create an end to match closest if

Stmt::=... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end

— formal, clear, elegant
— allows sequence of Stmts in then and else branches, no {, }
needed

— extra end required for every if

(But maybe this is a good idea anyway? These ambiguities can lead to
programmer bugs ...)

Winter 2013 UW CSE 401 (Michael Ringenburg)
’ Parser Tools and
Operators

* Most parser tools can cope with ambiguous
grammars
— Makes life simpler if you’re careful

* Typically one can specify operator precedence
& associativity

— Allows simpler, ambiguous grammar with fewer
nonterminals as basis for generated parser,
without creating problems

Winter 2013 UW CSE 401 (Michael Ringenburg)

Parser Tools and Ambiguous /s
Grammars

* Possible rules for resolving other problems

— Earlier productions in the grammar preferred to
later ones

— Longest match used if there is a choice
* Parser tools normally allow for this

— But be sure that what the tool does is really what
you want

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Agenda

 Start our first parsing algorithm: LR Parsing

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Parsing Algorithms

* The two primary style of parsing are LL and LR
parsing

* LL Parsing (Left-to-right scan, Leftmost
derivation)

— Top down — start with grammar start symbol, work
your way down until you get to terminals.

— Generates a leftmost derivation (the leftmost
derivation assuming unambiguous grammar)

— The “traditional” starting point for teaching parsing.

* We’'ll start with LR since you need it for your
projects (and it’s the most commonly used).

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ LR(1) Parsing

» We'll focus specifically on LR(1) parsers
— Left to right scan, Rightmost derivation (reverse
rightmost), 1 symbol lookahead

* Lookahead: how far past current symbol we can look to
determine which rule to apply.

— Almost all practical programming languages have
an LR(1) grammar

— LALR(1), SLR(1), etc. — subsets of LR(1) with lower
memory requirements, slightly less power

* LALR(1) can mostly parse most real languages, and is
used by YACC/Bison/CUP/etc.

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Bottom-Up Parsing

* Basic Idea: Read tokens left to right, push
(shift) onto a stack.

 Whenever the top of the stack matches the
right hand side of a production, reduce it to
the appropriate non-terminal and add that
non-terminal to the parse tree.

e The upper edge of this partial parse tree is
known as the frontier.

* Process called shift-reduce parsing.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Bottom-Up Parsing

* Basic Idea: Read tokens left to right, push
(shift) onto a stack.

 Whenever the top of the stack matches the
right hand side of a production, reduce it to
the appropriate non-terminal and add that
non-terminal to the parse tree. <Slight Lie

* The upper edge of this partial parse tree is
known as the frontier.

* Process called shift-reduce parsing.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: Parsea b b c d e

(bottom up)
S:.:=aABe
Au=Abc| b
B::=
Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Details

* The bottom-up parser reconstructs a reverse
rightmost derivation

* Given the rightmost derivation
S=>_ B1=>1 Br=>m =1 Pra=>rm Bra=>m P = W
the parser will first discover 3, ,=>,.,B, , then
Bn—2=>rm n-17 etc.

* Parsing terminates when

— B, reduced to S (start symbol, success), or
— No match can be found (syntax error)

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 How Does this Work?

* Key: given what we’ve already seen and the next
input symbol (the lookahead), decide what to do.
* Choices:
— Perform a reduction
— Look ahead further (shift another symbol onto the stack)
* Can reduce A=>f} if both of these hold:
— A=>f is a valid production
— A=>f is a step in the rightmost derivation (e.g., don’t use
the A=>b reduction for the second ‘b’ in our example).

* That’s why we call it a shift-reduce parser

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Difficulties

* Tricky parts:

— How do we do this efficiently?

* Prefer O(sourceLength + derivationLength). Can’t really
do better than O(input + output)!

* Naive approach (examine full stack at every step) is
O((sourceLength + derivationLength)*sourceLength),
since stack is potentially as long as program

— How do we know whether A=>f is a step in the
rightmost derivation (second condition for
reducing)?

* Preview: Generate DFAs encoded by tables ...

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Sentential Forms

* |f S=>* q, the string a is called a sentential form of
the of the grammar

* In the derivation
S =>[31=>ﬁ2=>'"=>Bn-2=>ﬁn-1=>ﬁn =w
each of the f3; are sentential forms

* Asentential form in a rightmost derivation is called a
right-sentential form (similarly for leftmost and left-
sentential)

— l.e., ais aright-sentential form of the grammar if S=>_* a

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Handles

* A substring of the tree frontier (the highest
level that we’ve built) that matches the right
side of a production, and is used in the
rightmost derivation of the current string.

— Even if A::=f is a production, B is a handle only if it

matches the frontier at a point where A::= was
used in the current derivation

— P may appear in other places in the frontier
without being a handle for A::=f3

* Bottom-up parsing is all about finding these
handles

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Handles (cont.)

* Formally, a handle of a right-sentential form y,
is a production A ::= 3 and a position in ¥,
where 3 may be replaced by A to produce the
previous right-sentential form vy, , in the
rightmost derivation of the current string that
is being parsed

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Handle Examples

* In the derivation
S =>aABe => aAde => aAbcde => abbcde

— abbcde is a right sentential form whose handle is
A::=b at position 2

— aAbcde is a right sentential form whose handle is
A::=Abc at position 4
* A::=b at position 3 is not a handle
* (Note: some books take the left of the match
as the position)

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Implementing Shift-Reduce (s
Parsers "

* Key Data structures
— A stack holding the frontier of the tree
— A string with the remaining input

— Something that encodes the rules that tell us what
action to take given the state of the stack and
lookahead

* This is typically a table that encodes a finite automata

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Shift-Reduce Parser
Actions

 What are these actions that we may take?

— Reduce — if the top of the stack is the right side of
a handle A::=f, pop the right side 3 and push the
left side A

— Shift — push the next input symbol onto the stack

— Accept —announce success
— Error — syntax error discovered

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Shift-Reduce Example

Stack Input Action

S abbcdeS shift

Sa bbcdeS shift

Sab bcdeS reduce A=>b

SaA bcdeS shift

SaAb cdeS shift

SaAbc deS reduce A=>Abc

SaA deS shift

SaAd eS reduce B=>d

SaAB eS shift S::= aABe
SaABe S reduce S=>aABe A:i=Abc|b
$S S accept B::=

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ How Do We Decide which
action to take?

» Def. Viable prefix — a prefix of a right-sentential form
that can appear on the stack of the shift-reduce
parser

— Equivalent: a prefix of a right-sentential form that does not
continue past the rightmost handle of that sentential form

— Fact: the set of viable prefixes of a CFG is a regular
language.
* |dea: Construct a DFA to recognize viable prefixes
given the stack and remaining input
— Recall, any regular language is recognizable by a DFA
— Perform reductions when we recognize them

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Viable Prefixes for our
Example Grammar
Viable Prefix Handle/Action

S Accept
S .= aABe aABe S ::= aABe
A::=Abc|b aAd B:=d
B:=d aAbc A ::= Abc
Ab A::=b
Plus prefixes of Shift...
above...

. The listed prefixes are those that extend all the way to
the end of a handle — these correspond to reduction
actions. Their prefixes are also viable prefixes.

- Why not aAbcbc? Extends past the handle (Abc).

Winter 2013 UW CSE 401 (Michael Ringenburg)

DFA for viable prefixes of
our example grammar

e
accept 5::= aABe

Sﬂ\ F\%

a

start 1 G\ A b Q < @A::=Abc
b
A:=b

&, 3 W,
d
w=d

B

Winter 2013 UW CSE 401 (Michael Ringenburg)

S ::=aABe

Trace A:=Abc|b
B::=
Stack Input accept s::= aABe

S abbcde$

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Observations

* Way too much backtracking (start down a
path, end up having to shift and restart)

— We want the parser to run in time proportional to
the length of the input
* Where the heck did this DFA come from
anyway?

— From the underlying grammar — in this simple case
we were able to intuitively see all of the viable
prefixes. But how do we find them in general?

— We’ll defer construction details for now

Winter 2013 UW CSE 401 (Michael Ringenburg)

