
Register Allocation

Preston Briggs
Reservoir Labs

An optimizing compiler

A classical optimizing compiler (e.g., LLVM) with three parts and a nice
separation of concerns:
• front end (language dependent, machine independent)
• optimizer (language independent, machine independent)
• back end (language independent, machine dependent)

Pretty optimistic!

optimizer BEFESL IL IL SL

Code generation

Pursuing our optimistic separation of concerns, we think of code
generation as having three parts:

• Instruction selection,
• Register allocation, and
• Instruction scheduling.

As you'll come to see, whenever there are multiple phases, there's a
phase-ordering problem.

For some machines, one part or another won't matter to much.

In other, tougher cases, we'll have to explore new ideas.

Registers

The top of the memory hierarchy

log scale!

regs

TLB

cache

RAM

disk

1/3 cycle

3 cycles

50+ cycles

Register allocation

As part of the overall design of his compiler, Backus suggested a
simplifying separation of concerns:

 During optimization, assume an infinite set of registers;
 treat register allocation as a separate problem.

John Backus led a team at IBM building the first commercial
compiler, Fortran, in 1955. He got a Turing Award.

Sheldon Best built the register allocator.

For example

Consider this simple source code:

	 	 	 	 int	 sum(int	 x,	 int	 y)	 {
	 	 	 	 	 	 return	 x	 +	 y;
	 	 	 	 }

Here's what the IL might look like:

	 	 	 	 sum:	 enter	 =>	 rX,	 rY
	 	 	 	 	 	 	 	 	 rX	 +	 rY	 =>	 r100
	 	 	 	 	 	 	 	 	 return	 r100

For example, ...

Here's what the IL might look like:

	 	 	 	 sum:	 enter	 =>	 r100,	 r101
	 	 	 	 	 	 	 	 	 rX	 +	 rY	 =>	 r102
	 	 	 	 	 	 	 	 	 return	 r102

and here's what we might see after instruction selection (for a funny machine)

	 	 	 	 sum:	 mov	 	 	 0,	 100	 	 	 	 	 	 	 	 ;	 copy	 r0	 to	 r100
	 	 	 	 	 	 	 	 	 mov	 	 	 1,	 101	 	 	 	 	 	 	 	 ;	 copy	 r1	 to	 r101
	 	 	 	 	 	 	 	 	 iadd	 	 100,	 101,	 102	 ;	 r100	 +	 r101	 =>	 r102
	 	 	 	 	 	 	 	 	 mov	 	 	 102,	 0	 	 	 	 	 	 	 	 ;	 copy	 r102	 to	 r0
	 	 	 	 	 	 	 	 	 rtn

The mov's are there to satisfy the calling convention.

For example, ...

After instruction selection:

	 	 	 	 sum:	 mov	 	 	 0,	 100
	 	 	 	 	 	 	 	 	 mov	 	 	 1,	 101
	 	 	 	 	 	 	 	 	 iadd	 	 100,	 101,	 102
	 	 	 	 	 	 	 	 	 mov	 	 	 102,	 0
	 	 	 	 	 	 	 	 	 rtn

and after register allocation

	 	 	 	 sum:	 iadd	 	 0,	 1,	 0
	 	 	 	 	 	 	 	 	 rtn

Cool!

Varieties of register allocation

Register allocation may be performed at many levels:

• Expression tree
• Local (basic block)
• Loop
• Global (routine)
• Interprocedural

Global optimization suggests global register allocation.

Interesting problems

• Control flow
• Machine details
• 2-address instructions
• Calling conventions
• Register pairs
• Restricted instructions

Finally, there are practical considerations: Space and time.

Graph coloring offers a simplifying abstraction.

Allocation via coloring

Despite C's register keyword, we don't allocate variables;
instead, we allocate live ranges.
• A value corresponds to a definition
• A live range is composed of one or more values connected by

common uses.
A single variable may be represented by many live ranges;
furthermore, many live ranges aren't visible in the source.

We construct an interference graph, where
• Vertices represent live ranges
• Each edge represents an interference between two live ranges;

i.e., both live ranges are simultaneously live and have different
values.

• A k-coloring represents a register assignment.

Live ranges

Consider the live ranges in this example:

Chaitin called the process of finding live ranges getting the right
number of names. Others called it web analysis. I call it
renumbering and implement it using SSA.

i=1
j=i+2

i=3+j
j=4*i

i=5*j
return	 i

Interference

Two live ranges interfere if, at some point in the routine,
• Both live ranges have been defined,
• Both live ranges will be used, and
• The live ranges have different values.

Since these conditions are undecidable, we use a conservative
approximation.

At each definition in the routine, we make the defined live range
interfere with all other live ranges that
• are live, and
• are available.

However, if the definition is a copy instruction, we don't add an
interference between the source and destination edges.

For example

read	 a
read	 b

d=c
return	 d

c=a/2 c=b/2

For example, ...

read	 a
read	 b

d=c
return	 d

c=a/2 c=b/2

a

d

b c

For example, ...

read	 a
read	 b

d=c
return	 d

c=a/2 c=b/2

a

d

b c

For example, ...

read	 a
read	 b

d=c
return	 d

c=a/2 c=b/2

a

d

b c

Chaitin's allocator renumber

build

coalesce

spill costs

simplify

select

spill code

Chaitin's allocator

renumber - Find all distinct live ranges and number them uniquely.

build - Construct the interference graph.

coalesce - For each copy where the source and destination live
ranges don't interfere, union the 2 live ranges and remove the copy.

spill costs - Estimate the dynamic cost of spilling each live range.

simplify - Repeatedly remove nodes with degree < k from the graph
and push them on a stack. If every remaining node has degree >= k,
select a node, mark it for spilling, and remove it from the graph.

spill code - For spilled nodes, insert a load/store at each use/def and
repeat from the beginning.

select - Reassemble the graph with nodes popped from the stack.
As each node is added to the graph, choose a color that differs from
those of the neighbors in the graph.

Another example

With k = 3

b

c

a d e

Another example, ...

With k = 3

b

c

d e

a

Another example, ...

With k = 3

b

d e

a

c

Another example, ...

With k = 3

d e

a

c

b

Another example, ...

With k = 3

e

a

c

b

d

Another example, ...

With k = 3 a

c

b

d

e

Another example, ...

With k = 3

e

a

c

b

d

Another example, ...

With k = 3

d e

a

c

b

Another example, ...

With k = 3

b

d e

a

c

Another example, ...

With k = 3

b

c

d e

a

Another example, ...

With k = 3

b

c

a d e

The interference graph

The representation of the interference graph is the major factor driving
space and time requirements of the allocator (and maybe even the entire
compiler).

Some routines have O(5K) nodes and O(1M) edges.

Required operations are:
new(n) - Return a new graph with n nodes, but no edges
add(g, x, y) - Return a graph including g and an edge between x and y
interfere(g, x, y) - Return true if there's an edge between x and y in g
degree(g, x) - Return the number of neighbors of x in g
neighbors(g, x) - Return the set of neighbors of x in g

The interference graph, ...

Chaitin used a dual representation
• A triangular bit matrix, supporting efficient random access, and
• A vector of adjacency vectors, supporting efficient access to the

neighbors of a node.

The structures are initialized in two passes over the code.
• Before the 1st pass, allocate and clear the bit matrix. During the

1st pass, fill in the matrix and accumulate the number of neighbors
for each node.

• Before the 2nd pass, allocate the adjacency vectors and clear the
bit matrix. During the 2nd pass, rebuild the bit matrix, adding
entries to the adjacency vectors.

• Since coalescing corrupts the graph, the 2nd pass is repeated until
all coalescing is complete.

• After coalescing, space for the bit matrix may be reclaimed.

Spilling

Generally the spill cost of a live range is the weighted sum of the
number of uses and defs, where each use and def is weighted
proportionally to its loop-nesting depth.

However, this neglects two important refinements introduced by
Chaitin:
1. There's no benefit in spilling a live range between 2 uses or

between a def and a use if no other live ranges die in the interval.
2. Some live ranges should be rematerialized instead of being spilled

to memory.

For best results, these details should play into the computation of spill
costs as well as creating spill code.

Chaitin's contribution

The 1st complete allocator based on graph coloring was descibed by
Chaitin, et al. in 1981. They developed
• a precise notion of interference,
• coalescing,
• an efficient coloring heuristic, and
• efficient data structures and algorithms for managing the

interference graph.

Additionally, they showed how to manipulate the interference graph in
a systematic fashion to account for many common machine "features."

Chaitin's '82 paper gives a coloring heuristic that extends naturally to
handle spilling.

A problem

Ken Kennedy showed me this counter example:

w

z

x y

Clearly there's a 2-coloring, but Chaitin's heuristic won't find it.

The optimistic allocator

renumber

build

coalesce

spill costs

simplify

select

spill code

Instead of spilling, Briggs pushes the
spill candidate on the stack, hoping
there will be a color available.

All nodes go on the stack.

By deferring spill decisions, Briggs
wins twice:
• when neighbors of a node get

the same color, and
• when a neighbor has already

been spilled.

Chaitin and Briggs

• Chaitin's method colors a subset of the graphs Briggs colors.
• Any live range Briggs spills, Chaitin spills.
• Chaitin often spills more live ranges.
• Improvements can be significant.
• Briggs achieves the same time bounds as Chaitin.

Realistically, Chaitin did all of the hard work;
Briggs made a small improvement and drew pretty figures.

