
CSE 401 - Compilers
Section 2

1/24/2013
12:30 - MEB 238

1:30 - EE 037

Regex Exercise

strings of 0s and 1s such that every sequence
of two 1s must be preceded by at least two
consecutive 0s and followed by at least three

Anyone think about this more?
Have a regex?
Have a DFA/NFA?
Think it's impossible?

Regex Exercise

strings of 0s and 1s such that every sequence
of two 1s must be preceded by at least two
consecutive 0s and followed by at least three

A Key Observation: The validity of the next
character depends on at most the four
preceding characters

Regex Exercise

strings of 0s and 1s such that every sequence
of two 1s must be preceded by at least two
consecutive 0s and followed by at least three

A Key Observation: The validity of the next
character depends on at most the four
preceding characters

Suggests that we can build a DFA
● States encode last characters seen

Regex Exercise

strings of 0s and 1s such that every sequence
of two 1s must be preceded by at least two
consecutive 0s and followed by at least three

seen can see seen can see

^ 0,1 ^1 0

^0 0,1 ^01 0

00 0,1 101 0

10 0,1 0011 0

001 0,1 110 0

1100 0

Regex Exercise

strings of 0s and 1s such that every sequence
of two 1s must be preceded by at least two
consecutive 0s and followed by at least three

Regular languages: RE <-> NFA <-> DFA

We've seen RE -> NFA -> DFA
DFA -> NFA is trivial
NFA -> RE can be done algorithmically via...

Generalized Nondeterministic Finite
Automaton (GNFA)

An NFA but:
● One start state
● One accept state
● REs instead of single characters on its

edges

NFA -> GNFA:
● Add super-start and super-accept states
GNFA -> RE:
● Remove states one at a time, fixing edges

Regex Exercise

strings of 0s and 1s such that every sequence
of two 1s must be preceded by at least two
consecutive 0s and followed by at least three

((1?0)*(1?(00110)*00)?)*1?

Believe me? Questions?

Project Clarifications

Longest match examples:
● "true;" -> TRUE SEMICOLON
● "truethat;" -> ID(truethat) SEMICOLON
● "verytrue;" -> ID(verytrue) SEMICOLON
● "true that;" -> TRUE ID(that) SEMICOLON
JFLEX tries to all match REs at once

Another case:
● "45true" -> INT(45) TRUE

Project Questions?

Parser Ambiguities
expr ::= expr + expr | expr - expr |
 expr * expr | expr / expr |
 int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

1. Find an ambiguous parse

2. Fix the grammar

3. Support parenthesis

Parser Ambiguities
expr ::= expr + term | expr - term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Sentential Form: α in S =>* α

S =>* (term * factor) =>* (2 * 3)

Handle: A position in α and a production that
we can "undo"

term ::= term * factor at position 4

Definition Review

expr ::= expr + term | expr - term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Stack Input Action (shift or reduce)
 $ 1 + 2 * 3$ shift

 $S $ accept

Shift-Reduce Exercise

Regular or Context-Free?

1. L = {0n1n | n >= 0}

2. L = {0n1m | n >= 0, m > n}

3. L = {w | #0(w) == #1(w)}

4. L = {w | #01(w) == #10(w)}

5. Balanced parenthesis?

Generating regex / DFA / grammar?

Regular or Context-Free?

1. L = {0n1n | n >= 0} CF

2. L = {0n1m | n >= 0, m > n} CF

3. L = {w | #0(w) == #1(w)} CF

4. L = {w | #01(w) == #10(w)} R!

5. Balanced parenthesis? CF

Go get a job!

Questions?

