CSE 401/M501 – Compilers

x86-64 Lite for Compiler Writers A quick (a) introduction or (b) review [pick one] Hal Perkins Autumn 2018

Administrivia

- HW3 due tonight
 - At most 1 late day allowed so we can get sample solutions out in class on Wednesday before ...
- ... Midterm exam, Friday, in class
 - Closed book, no notes; will include brief reference info on exam as needed
 - Contents: up to basics of static semantics (i.e., review last week's lectures and know general issues, not detailed coding that is the next part of the project)
 - Old exams and midterm topic list on the web now
 - Review in sections this week
 - And remember AB/AC sections have moved upstairs in Loew

Agenda

- Overview of x86-64 architecture
 - Core part only, a bit beyond what we need for the project, but not too much
- Upcoming lectures...
 - Mapping source language constructs to x86
 - Code generation for MiniJava project
- Rest of the quarter...
 - More sophisticated back-end algorithms
 - Survey of compiler optimizations

Some x86-64 References

(Links on course web - * = most useful)

- **x86-64 Instructions and ABI
 - Handout for University of Chicago CMSC 22620,
 Spring 2009, by John Reppy
- *x86-64 Machine-Level Programming
 - Earlier version of sec. 3.13 of Computer Systems:
 A Programmer's Perspective, 2nd ed. by Bryant & O'Hallaron (CSE 351 textbook)
- Intel architecture processor manuals

x86-64 Main features

- 16 64-bit general registers; 64-bit integers (but int is 32 bits usually; long is 64 bits)
- 64-bit address space; pointers are 8 bytes
- 16 SSE registers for floating point, SIMD
- Register-based function call conventions
- Additional addressing modes (pc relative)
- 32-bit legacy mode
- Some pruning of old features

x86-64 Assembler Language

- Target for our compiler project
 But, the nice thing about standards...
- Two main assembler languages for x86-64
 - Intel/Microsoft version what's in the Intel docs
 - AT&T/GNU assembler what we're generating and what's in the linked handouts and 351 book
 - Use gcc –S to generate asm code from C/C++ code
- Slides use gcc/AT&T/GNU syntax

Intel vs. GNU Assembler

• Main differences between Intel docs and gcc assembler

	Intel/Microsoft	AT&T/GNU as
Operand order: op a,b	a = a op b (dst first)	b = a op b (dst last)
Memory address	[baseregister+offset]	offset(baseregister)
Instruction mnemonics	mov, add, push,	movq, addq, pushq [explicit operand size added to end]
Register names	rax, rbx, rbp, rsp,	%rax, %rbx, %rbp, %rsp,
Constants	17, 42	\$17, \$42
Comments	; to end of line	# to end of line or /* */

 Intel docs include many complex, historical instructions and artifacts that aren't commonly used by modern compilers – and we won't use them either

x86-64 Memory Model

- 8-bit bytes, byte addressable
- 16-, 32-, 64-bit words, double words and quad words (Intel terminology)
 - That's why the 'q' in 64-bit instructions like movq, addq, etc.
- Data should usually be aligned on "natural" boundaries for performance, although unaligned accesses are generally supported – but with a big performance penalty on many machines
- Little-endian address of a multi-byte integer is address of low-order byte

x86-64 registers

- 16 64-bit general registers
 - %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8-%r15
- Registers can be used as 64-bit integers or pointers, or as 32-bit ints
 - Also possible to reference low-order 16- and 8-bit chunks – we won't for the most part
- To simplify our project we'll use only 64-bit data (ints, pointers, even booleans!)

Instruction Format

- Typical data manipulation instruction opcode src,dst # comment
- Meaning is
 - $dst \leftarrow dst op src$
- Normally, one operand is a register, the other is a register, memory location, or integer constant
 - Can't have both operands in memory can't encode two memory addresses in a single instruction (e.g., cmp, mov)
- Language is free-form, comments and labels may appear on lines by themselves (and can have multiple labels per line of code)

x86-64 Memory Stack

- Register %rsp points to the "top" of stack
 - Dedicated for this use; don't use otherwise
 - Points to the last 64-bit quadword pushed onto the stack (not next "free" quadword)
 - Should always be quadword (8-byte) aligned
 - It will start out this way, and will stay aligned unless your code does something bad
 - Should be 16-byte aligned on most function calls
 - Stack grows down

Stack Instructions

pushq src

%rsp \leftarrow %rsp - 8; memory[%rsp] \leftarrow src

(e.g., push src onto the stack)

popq dst

dst ← memory[%rsp]; %rsp ← %rsp + 8 (e.g., pop top of stack into dst and logically remove it from the stack)

Stack Frames

- When a method is called, a stack frame is traditionally allocated on the logical "top" of the stack to hold its local variables
- Frame is popped on method return
- By convention, %rbp (base pointer) points to a known offset into the stack frame
 - Local variables referenced relative to %rbp
 - Base pointer common in 32-bit x86 code; less so in x86-64 code where push/pop used less & stack frame normally has fixed size so locals can be referenced from %rsp easily
 - We will use %rbp in our project simplifies addressing of local variables and compiler bookkeeping

Operand Address Modes (1)

• These should cover most of what we'll need

 movq \$17,%rax
 # store 17 in %rax

 movq %rcx,%rax
 # copy %rcx to %rax

 movq 16(%rbp),%rax
 # copy memory to %rax

 movq %rax,-24(%rbp)
 # copy %rax to memory

- References to object fields work similarly put the object's memory address in a register and use that address plus an offset
- Remember: can't have two memory addresses in a single instruction

Operand Address Modes (2)

 A memory address can combine the contents of two registers (with one optionally multiplied by 2, 4, or 8) plus a constant:

basereg + indexreg*scale + constant

- Main use of general form is for array subscripting or small computations if the compiler is clever
- Example: suppose we have an array A of 8-byte ints with address of the array in %rcx and subscript i in %rax. Code to store %rbx in A[i]:

movq %rbx,(%rcx,%rax,8)

Basic Data Movement and Arithmetic Instructions

movq src,dst $dst \leftarrow src$ addq src,dst $dst \leftarrow dst + src$ subq src,dst $dst \leftarrow dst - src$ incq dst $dst \leftarrow dst + 1$ decq dst $dst \leftarrow dst - 1$ negq dst $dst \leftarrow - dst$ (2's complement arithmetic negation)

Integer Multiply and Divide

imulq src,dst
 dst ← dst * src
 dst must be a register

cqto

%rdx:%rax ← 128-bit sign extended copy of %rax (why??? To prep numerator for idivq!)

idivq src

Divide %rdx:%rax by src (%rdx:%rax holds signextended 128-bit value; cannot use other registers for division)

%rax \leftarrow quotient

%rdx ← remainder

(no division in MiniJava!)

Bitwise Operations

andq src,dst dst \leftarrow dst & src orq src,dst dst \leftarrow dst | src xorq src,dst dst \leftarrow dst ^ src notq dst dst ← ~ dst (logical or 1's complement)

Shifts and Rotates

shlq dst,count dst \leftarrow dst shifted left count bits shrq dst,count dst \leftarrow dst shifted right count bits (0 fill) sarq dst, count dst \leftarrow dst shifted right count bits (sign bit fill)

rolq dst,count dst ← dst rotated left count bits rorq dst,count dst ← dst rotated right count bits

Uses for Shifts and Rotates

- Can often be used to optimize multiplication and division by small constants
 - If you're interested, look at "Hacker's Delight" by Henry Warren, A-W, 2nd ed, 2012
 - Lots of very cool bit fiddling and other algorithms
 - But be careful be sure semantics are OK
 - Example: right shift is not the same as integer divide for negative numbers (why?)
- There are additional instructions that shift and rotate double words, use a calculated shift amount instead of a constant, etc.

Load Effective Address

• The unary & operator in C/C++

leaq src,dst # dst ← address of src

- dst must be a register
- Address of src includes any address arithmetic or indexing
- Useful to capture addresses for pointers, reference parameters, etc.
- Also useful for computing arithmetic expressions that match r1+scale*r2+const

Control Flow - GOTO

- At this level, all we have is goto and conditional goto
- Loops and conditional statements are synthesized from these
- Note: random jumps play havoc with pipeline efficiency; much work is done in modern compilers and processors to minimize this impact

Unconditional Jumps

jmp dst

%rip \leftarrow address of dst

- dst is usually a label in the code (which can be on a line by itself)
- dst address can also be indirect using the address in a register or memory location (*reg or *(reg)) – use for method calls, switch

Conditional Jumps

- Most arithmetic instructions set "condition code" bits to record information about the result (zero, non-zero, >0, etc.)
 - True of addq, subq, andq, orq; but not imulq, idivq, leaq
- Other instructions that set condition codes cmpq src,dst # compare dst to src (e.g., dst-src) testq src,dst # calculate dst & src (logical and) – These do not alter src or dst

UW CSE 401/M501 Autumn 2018

Conditional Jumps Following Arithmetic Operations

jz	label	# jump if result == 0
jnz	label	# jump if result != 0
jg	label	# jump if result > 0
jng	label	# jump if result <= 0
jge	label	# jump if result >= 0
jnge	label	# jump if result < 0
jl	label	# jump if result < 0
jnl	label	# jump if result >= 0
jle	label	# jump if result <= 0

• Obviously, the assembler is providing multiple opcode mnemonics for several actual instructions

Compare and Jump Conditionally

- Want: compare two operands and jump if a relationship holds between them
- Would like to have this instruction

jmp_{cond} op1,op2,label but can't, because 3-operand instructions can't be encoded in x86-64

(also true of most other machines)

cmp and jcc

• Instead, we use a 2-instruction sequence

cmpq op1,op2

j_{cc} label

where j_{cc} is a conditional jump that is taken if the result of the comparison matches the condition cc

Conditional Jumps Following Arithmetic Operations

je	label	# jump if op1 == op2
jne	label	# jump if op1 != op2
jg	label	# jump if op1 > op2
jng	label	# jump if op1 <= op2
jge	label	# jump if op1 >= op2
jnge	label	# jump if op1 < op2
jl	label	# jump if op1 < op2
jnl	label	# jump if op1 >= op2
jle	label	# jump if op1 <= op2
jnle	label	# jump if op1 > op2

Again, the assembler is mapping more than one mnemonic to some machine instructions

Function Call and Return

- The x86-64 instruction set itself only provides for transfer of control (jump) and return
- Stack is used to capture return address and recover it
- Everything else parameter passing, stack frame organization, register usage – is a matter of software convention and not defined by the hardware

call and ret Instructions

call label

- Push address of next instruction and jump
- %rsp ← %rsp 8; memory[%rsp] ← %rip
 %rip ← address of label
- Address can also be in a register or memory as with jmp we'll use these for dynamic dispatch of method calls (more later)

ret

- Pop address from top of stack and jump
- %rip ← memory[%rsp]; %rsp ← %rsp + 8
- WARNING! The word on the top of the stack had better be the address we want and not some leftover data

enter and leave

- Complex instructions for languages with nested procedures
 - enter can be slow on current processors best avoided – i.e., don't use it in your project
 - leave is equivalent to
 - mov %rsp,%rbp

pop %rbp

and is generated by many compilers. Fits in 1 byte, saves space. Not clear if it's any faster.

X86-64-Register Usage

- %rax function result
- Arguments 1-6 passed in these registers in order
 - %rdi, %rsi, %rdx, %rcx, %r8, %r9
 - For Java/C++ "this" pointer is first argument, in %rdi
 - More about "this" later
- %rsp stack pointer; value must be 8-byte aligned always and 16-byte aligned when calling a function
- %rbp frame pointer (optional use)
 - We'll use it

x86-64 Register Save Conventions

 A called function must preserve these registers (or save/restore them if it wants to use them)

– %rbx, %rbp, %r12-%r15

- %rsp isn't on the "callee save list", but needs to be properly restored for return
- All other registers can change across a function call
 - Debugging/correctness note: always assume every called function will change all registers it is allowed to
 - (including registers containing function parameters!)

x86-64 Function Call

- Caller places up to 6 arguments in registers, rest on stack, then executes call instruction (which pushes 8-byte return address)
- On entry, called function prologue sets up the stack frame:
 - # save old frame ptr pushq %rbp movq %rsp,%rbp
 - # new frame ptr is top of
 - stack after ret addr and #
 - # old rbp pushed
 - \$framesize,%rsp # allocate stack frame subq

x86-64 Function Return

- Called function puts result (if any) in %rax and restores any callee-save registers if needed
- Called function returns with:
 - movq%rbp,%rsp# or use leave insteadpopq%rbp# of movq/popqret
- If caller allocated space for arguments it deallocates as needed

Caller Example

- n = sumOf(17,42)
 - movq \$42,%rsi # load arguments in
 - movq \$17,%rdi # either order
 - call sumOf # jump & push ret addr
 - movq %rax,offset_n(%rbp) # store result

Example Function

Assembly Language Version

# int sum(Df(int x,	int y) {			
# int a, in	int a, int b;				
sumOf:					
pushq	%rbp	# prologue			
movq	%rsp,%rbp				
subq	\$16,%rsp				

b = a + y; movq -8(%rbp),%rax addq %rsi,%rax movq %rax,-16(%rbp)

return b; movq -16(%rbp),%rax movq %rbp,%rsp popq %rbp ret # }

Stack Frame for sumOf

```
int sumOf(int x, int y) {
    int a, int b;
    a = x;
    b = a + y;
    return b;
}
```

The Nice Thing About Standards...

- The above is the System V/AMD64 ABI convention (used by Linux, OS X)
- Microsoft's x64 calling conventions are slightly different (sigh...)
 - First four parameters in registers %rcx, %rdx, %r8, %r9; rest on the stack
 - Called function stack frame always includes empty space for called function to save values passed in parameter registers if desired
- Not relevant for us, but worth being aware of it
 - (except that providing space in each stack frame to save parameter registers will be handy for our simple code gen)

Coming Attractions

- Now that we've got a basic idea of the x86-64 instruction set, we need to map language constructs to x86-64
 - Code Shape
- Then need to figure out how to get compiler to generate this and how to bootstrap things to run our compiled programs
- But first! Midterm Friday!!! See you then!