
CSE 401/M501 – Compilers

x86-64, Running MiniJava,
Basic Code Generation and Bootstrapping

Hal Perkins
Autumn 2018

UW CSE 401/M501 Autumn 2018 M-1

Running MiniJava Programs

• To run a MiniJava program
– Space needs to be allocated for a stack and a heap
– %rsp and other registers need to have sensible

initial values
–We need some way to allocate storage (new) and

communicate with the outside world

UW CSE 401/M501 Autumn 2018 M-2

Bootstraping from C

• Idea: take advantage of the existing C runtime
library

• Use a small C main program to call the
MiniJava main method as if it were a C
function

• C’s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc, etc.

UW CSE 401/M501 Autumn 2018 M-3

Assembler File Format
• Compiler output is an assembly language program (ascii)
• GNU syntax is roughly this (src/runtime/demo.s in project

starter code is a runnable example, although not generated
by a MiniJava compiler)

.text # code segment

.globl asm_main # label at start of compiled static main
<generated code> # repeat .code/.data as needed

asm_main: # start of compiled “main”
...
.data
<generated method tables>
repeat .text/.data as needed
…
end

UW CSE 401/M501 Autumn 2018 M-4

External Names

• In a Linux environment, an external symbol is
used as-is (xyzzy)

• In Windows and OS X, an external symbol xyzzy is
written in asm code as _xyzzy (leading
underscore)

• Your compiler needs to generate code that runs
on attu using Linux conventions, but if you want
to support the other as an option, feel free to add
a compiler switch or something

UW CSE 401/M501 Autumn 2018 M-5

Generating .asm Code
• Suggestion: isolate the actual compiler output

operations in a handful of routines
– Usual modularity reasons & saves some typing
– Possibilities

// write code string s to .asm output
void gen(String s) { … }
// write “op src,dst” to .asm output
void genbin(String op, String src, String dst) { … }
// write label L to .asm output as “L:”
void genLabel(String L) { … }

– A handful of these methods should do it

UW CSE 401/M501 Autumn 2018 M-6

A Simple Code Generation Strategy

• Goal: quick ‘n dirty correct code, optimize
later if time

• Traverse AST primarily in execution order and
emit code during the traversal
– Codegen visitor might want to traverse the tree in

ad-hoc ways depending on sequence that parts
need to appear in the code

• Treat the x86-64 as a 1-register machine with
a stack for additional intermediate values(!)

UW CSE 401/M501 Autumn 2018 M-7

(The?) Simplifying Assumption

• Store all values (reference, int, boolean) in 64-
bit quadwords
– Natural size for 64-bit pointers, i.e., object

references (variables of class types)

– C’s “long” size for integers
• Better to use int64_t in C code to guarantee size

(declared in <stdint.c>)

UW CSE 401/M501 Autumn 2018 M-8

x86 as a Stack Machine
• Idea: Use x86-64 stack for expression evaluation with

%rax as the “top” of the stack
• Invariant: Whenever an expression (or part of one) is

evaluated at runtime, the generated code leaves the
result in %rax

• If a value needs to be preserved while another
expression is evaluated, push %rax, evaluate, then pop
when first value is needed
– Remember: always pop what you push
– Will produce lots of redundant, but correct, code

• Examples below follow code shape examples, but with
some details about where code generation fits

UW CSE 401/M501 Autumn 2018 M-9

Example: Generate Code for Constants
and Identifiers
Integer constants, say 17

gen(movq $17,%rax)
• leaves value in %rax

Local variables (any type – int, bool, reference)
gen(movq varoffset(%rbp),%rax)

UW CSE 401/M501 Autumn 2018 M-10

Example: Generate Code for exp1 + exp2

Visit exp1
– generates code to evaluate exp1 with result in %rax

gen(pushq %rax)
– push exp1 onto stack

Visit exp2
– generates code for exp2; result in %rax

gen(popq %rdx)
– pop left argument into %rdx; cleans up stack

gen(addq %rdx,%rax)
– perform the addition; result in %rax

UW CSE 401/M501 Autumn 2018 M-11

Example: var = exp; (1)

Assuming that var is a local variable
Visit node for exp
• Generates code to eval exp and leave result in %rax

gen(movq %rax,offset_of_variable(%rbp))

UW CSE 401/M501 Autumn 2018 M-12

Example: var = exp; (2)

If var is a more complex expression (object or
array reference, for example)

visit var
gen(pushq %rax)
• push lvalue (address) of variable or object containing

variable onto stack
visit exp
• leaves rhs value in %rax

gen(popq %rdx)
gen(movq %rax,appropriate_offset(%rdx))

UW CSE 401/M501 Autumn 2018 M-13

Example: Generate Code for
obj.f(e1,e2,…en)

In principal the code should work like this:
Visit obj

• leaves reference to object in %rax

gen(movq %rax,%rdi)
• “this” pointer is first argument

Visit e1, e2, …, en. For each argument,
• gen(movq %rax,%correct_argument_register)

generate code to load method table pointer located at
0(%rdi) into some register, probably %rax
generate call instruction with indirect jump

UW CSE 401/M501 Autumn 2018 M-14

Method Call Complications

• Big one: code to evaluate any argument might

clobber argument registers (i.e., computing an

argument value might require a method call)

– Possible strategy to cope on next slides, but feel

free to do something better

• Other one: what if a method has too many

parameters?

– OK for CSE 401/M501 to assume all methods have

≤ 5 parameters plus “this” – do better if you want

UW CSE 401/M501 Autumn 2018 M-15

Method Calls in Parameters

• Suggestion to avoid trouble:
– Evaluate parameters and push them on the stack
– Right before the call instruction, pop the

parameters into the correct registers
• But….

UW CSE 401/M501 Autumn 2018 M-16

Stack Alignment (1)
• Above idea hack works provided we don’t call a

method while an odd number of parameter values are
pushed on the stack!
– (violates 16-byte alignment on method call…)

• We have a similar problem if an odd number of
intermediate values are pushed on the stack when we
call a function while evaluating an expression

• (We might get away with it if it only involves calls to
our generated, not library, code, but that would be
wrong*)

*i.e., might work, but it’s not the right way to solve the problem

UW CSE 401/M501 Autumn 2018 M-17

Stack Alignment (2)
• Workable solution: keep a counter in the code

generator of how much has been pushed on the
stack. If needed, emit extra gen(pushq %rax) to
align the stack before generating a call instruction
– Be sure to pop it after!!

• Another (cleaner, but more work) solution: make
stack frame big enough and use movq instead of
pushq to store arguments and temporaries
– Will need some extra bookkeeping to keep track of

how much to allocate and how temps are used

UW CSE 401/M501 Autumn 2018 M-18

Sigh…

• Multiple registers for method arguments is a
big win compared to pushing on the stack, but
complicates our life since we do not have a
fancy register allocator

• Feel free to do better than this simple
push/pop scheme – but remember, simple
and works wins over fancy and not finished or
broken

UW CSE 401/M501 Autumn 2018 M-19

Code Gen for Method Definitions

• Generate label for method
Classname$methodname:

• Generate method prologue
Push rbp, copy rsp to rbp, subtract frame size from rsp

• Visit statements in order
–Method epilogue is normally generated as part of

a return statement (next)
– In MiniJava the return is generated after visiting

the method body to generate its code

UW CSE 401/M501 Autumn 2018 M-20

Registers again…

• Method parameters are in registers
• But code generated for methods also will be

using registers, even if there are no calls to other
methods

• So how do we avoid clobbering parameters?
• Suggestion: Allocate space in the stack frame and

save copies of all parameter registers on method
entry. Use those copies as local variables when
you need to reference a parameter.

UW CSE 401/M501 Autumn 2018 M-21

Example: return exp;

• Visit exp; this leaves result in %rax where it
needs to be

• Generate method epilogue (copy rbp to rsp,
pop rbp) to unwind the stack frame; end with
ret instruction

UW CSE 401/M501 Autumn 2018 M-22

Control Flow: Unique Labels

• Needed in code generator: a String-valued
method that returns a different label each
time it is called (e.g., L1, L2, L3, …)

– Improvement: a set of methods that generate
different kinds of labels for different constructs
(can really help readability of the generated code)
• (while1, while2, while3, …; if1, if2, …; else1, else2, …;

fi1, fi2, … .)

UW CSE 401/M501 Autumn 2018 M-23

Control Flow: Tests

• Recall that the context for compiling a boolean
expression is:
– Label or address of jump target
–Whether to jump if true or false

• So the visitor for a boolean expression should
receive this information from the parent node

UW CSE 401/M501 Autumn 2018 M-24

Example: while(exp) body

• Assuming we want the test at the bottom of
the generated loop…
gen(jmp testLabel)
gen(bodyLabel:)
visit body
gen(testLabel:)
visit exp (condition) with target=bodyLabel and
sense=“jump if true”

UW CSE 401/M501 Autumn 2018 M-25

Example: exp1 < exp2
• Similar to other binary operators
• Difference: context is a target label and whether

to jump if true or false
• Code

visit exp1
gen(pushq %rax)
visit exp2
gen(popq %rdx)
gen(cmpq %rdx,%rax)
gen(condjump targetLabel)

• appropriate conditional jump depending on sense of test

UW CSE 401/M501 Autumn 2018 M-26

Boolean Operators

&& (and || if you add it)
– Create label(s) needed to skip around the two

parts of the expression
– Generate subexpressions with appropriate target

labels and conditions
!exp
– Generate exp with same target label, but reverse

the sense of the condition

UW CSE 401/M501 Autumn 2018 M-27

Reality check

• Lots of projects in the past have evaluated all
booleans to get 1 or 0, then tested that value
for control flow

• Would be nice to do better (as above), but
“simple and works”…

UW CSE 401/M501 Autumn 2018 M-28

Join Points
• Loops and conditional statements have join points where

execution paths merge
• Generated code must ensure that machine state will be

consistent regardless of which path is taken to get there
– i.e., the paths through an if-else statement must not leave a

different number of values pushed onto the stack
– If we want a particular value in a particular register at a join

point, both paths must put it there, or we need to generate
additional code to move the value to the correct register

• With a simple 1-accumulator model of code generation,
this should usually be true without needing extra work;
with better use of registers it becomes a bigger issue
– With more registers, would need to be sure they are used

consistently at join point regardless of how we get there

UW CSE 401/M501 Autumn 2018 M-29

Bootstrap Program

• The bootstrap is a tiny C program that calls your
compiled code as if it were an ordinary C function

• It also contains some functions that compiled
code can call as needed
– Mini “runtime library”
– Add to this if you like

• Sometimes simpler to generate a call to a new library
routine instead of generating in-line code

• Suggestion: do this for “exit if subscript out of bounds” check

• File: src/runtime/boot.c in project starter code
UW CSE 401/M501 Autumn 2018 M-30

Bootstrap Program Sketch
#include <stdio.h>
extern void asm_main(); /* compiled code */
/* execute compiled program */
void main() { asm_main(); }
/* write x to standard output */
void put(int64_t x) { … }
/* return a pointer to a block of memory at least nBytes

large (or null if insufficient memory available) */
char* mjcalloc(size_t nBytes) { return calloc(1,nBytes); }

UW CSE 401/M501 Autumn 2018 M-31

Main Program Label

• Compiler needs special handling for the static
main method label
– Label must be the same as the one declared

extern in the C bootstrap program and declared
.globl in the .s asm file

– asm_main used above
• Could be changed, but probably no point
• Why not “main”? (Hint: where is the real main?)

UW CSE 401/M501 Autumn 2018 M-32

Interfacing to “Library” code

• Trivial to call “library” functions
• Evaluate parameters using the regular calling

conventions
• Generate a call instruction using the “library”

function label
– (External names need leading _ in Windows, OS X)
– Linker will hook everything up

UW CSE 401/M501 Autumn 2018 M-33

System.out.println(exp)

MiniJava’s “print” statement
<compile exp; result in %rax>
movq %rax,%rdi # load argument register
call put # call external put routine

• If the stack is not kept 16-byte aligned, calls to
external C or library code can cause a runtime
error (will cause on OS X)

UW CSE 401/M501 Autumn 2018 M-34

If you want to run code on a Mac…
• Compiled code should work on a mac, but need

to watch for these points:
– External labels need to start with _ (e.g., _put)
– %rsp must be 16-byte aligned when call is

executed (should be anyway, but Linux will probably
allow 8-byte align)

– Addresing modes: assembler might reject leaq
label,%rax. Use leaq label(%rip),%rax
instead (explicit base reg.; also works fine on Linux)

– Hard to run gdb on a mac. Use clang/lldb instead
• And be sure that things run on Linux in your final

version!!! (No external _labels)
UW CSE 401/M501 Autumn 2018 M-35

And That’s It…

• We’ve now got enough on the table to
complete the compiler code generator
– (Once we finish the lectures on objects, vtables,

and method calls – which we did earlier J)
• Coming Attractions
– Lower-level IR and control-flow graphs
– Back end (instruction selection and scheduling,

register allocation)
–Middle (optimizations)

UW CSE 401/M501 Autumn 2018 M-36

