
Section 4: CUP & LL

Jack Eggleston, Nate Yazdani & Aaron Johnston
CSE 401/M501 – Compilers

Autumn 2018

Administrivia

• Homework 2 is due tonight!
– You have late days if you need them

• Parser is due one week from today

• Scanner feedback by next week
– Be sure to check when debugging parser ☺

Agenda

• CUP tips, tricks, and demo

• LL parsing

– See Sec. 3.3 of Cooper & Torczon for more

• A worksheet all about LL

The CUP parser generator

• Uses LALR(1)

– Weaker but faster variant of LR(1)

• LALR is more sensitive to ambiguity than LR

Language Hierarchies

The CUP parser generator

• Uses LALR(1)

– Weaker but faster variant of LR(1)

• LALR is more sensitive to ambiguity than LR

• CUP can resolve some ambiguities itself

– Precedence for reduce/reduce conflicts

– Associativity for shift/reduce conflicts

• If you use those features, read the docs carefully

The CUP parser generator

Demo: testing and debugging a CUP parser

LL(k) parsing

• LL(k) scans left-to-right, builds leftmost derivation,
and looks ahead k symbols

• Typically k = 1, just like LR

• The LL condition enable the parser to choose
productions correctly with 1 symbol of look-ahead

• We can transform a grammar to satisfy them

LL Condition

For each nonterminal in the grammar:

– Its productions must have disjoint FIRST sets

– If it is nullable, the FIRST sets of its productions
must be disjoint from its FOLLOW set

A ::= x | B
B ::= x

A ::= x | B
B ::= y

S ::= A x
A ::= ε | x

S ::= A y
A ::= ε | x

Factoring out common prefixes

When multiple productions of a nonterminal share a
common prefix, turn the different suffixes (“trails”) into
a new nonterminal.

Greeting ::= “hello, world” | “hello, friend” | “hello, ” Name
Name ::= “Sarah” | “John” | …

Greeting ::= “hello, ” Address
Address ::= “world” | “friend” | Name
Name ::= “Sarah” | “John” | …

Removing direct left recursion

When a nonterminal has left-recursive productions,
turn the different suffixes (”trails”) into a new
nonterminal, appended to the remaining productions.

Sum ::= Sum “+” Sum | Sum “-” Sum | Constant
Constant ::= “1” | “2” | “3” | …

Sum ::= Constant SumTrail
SumTrail ::= “+” Sum | “-” Sum | 𝜀
Constant ::= “1” | “2” | “3” | …

Removing indirect left recursion

• Pseudocode from Cooper & Torczon:

• Rather conservative: no need to push A
j
 into A

i
 if you

know that A
j
 ⇏ αA

i
β for any α, β

Removing indirect left recursion

When a nonterminal has another nonterminal (B) on
the left of a production, rewrite that production to use
all possible expansions of B. Repeat until the left side of
every production is a terminal or direct left recursion.
(Must choose an order to process nonterminals)

Expr ::= Ternary | Addition
Ternary ::= Expr “?” Expr “:” Stmt
Addition ::= Expr “+” Expr

Expr ::= Expr “?” Expr “:” Stmt | Expr “+” Expr

Worksheet

• Discuss and work in small groups!

• Reminders:
– FIRST(𝛼) is the set of terminal symbols that can begin a

string derived from 𝛼
– FOLLOW(A) is the set of terminal symbols that may

immediately follow A in a derived string

– nullable(A) is whether A can derive 𝜀

Computing FIRST, FOLLOW, and nullable
repeat

for each production X := Y
1
 Y

2
 … Y

k
if Y

1
 … Y

k
 are all nullable (or if k = 0)

 set nullable[X] = true
for each i from 1 to k and each j from i +1 to k
 if Y

1
 … Y

i-1
 are all nullable (or if i = 1)

add FIRST[Y
i
] to FIRST[X]

 if Y
i+1

 … Y
k
 are all nullable (or if i = k)

add FOLLOW[X] to FOLLOW[Y
i
]

 if Y
i+1

 … Y
j-1

 are all nullable (or if i+1=j)
add FIRST[Y

j
] to FOLLOW[Y

i
]

Until FIRST, FOLLOW, and nullable do not change

