## Adventures in <br> Dataflow Analysis

CSE 401 Section 9-ish
Jack Eggleston, Aaron Johnston, \& Nate Yazdani

## Announcements

- Code Generation due


## Announcements

- Code Generation due

- Compiler Additions due next Thursday, 12/6
- Involves revisiting all parts of the compiler


## Announcements

- Code Generation due
- Compiler Additions due next Thursday, 12/6
- Involves revisiting all parts of the compiler
- Final Report due the following Saturday, 12/8
- Ideally, also involves revisiting all parts of the compiler


## Review of Optimizations



## Review of Optimizations

Peephole

Local
Intraprocedural / Global
Interprocedural

## Review of Optimizations

## Peephole A few Instructions <br> Local

Intraprocedural / Global
Interprocedural

## Review of Optimizations

## Peephole A few Instructions

Local A Basic Block
Intraprocedural / Global
Interprocedural

## Review of Optimizations

## Peephole A few Instructions

Local A Basic Block
Intraprocedural / Global A Function/Method
Interprocedural

## Review of Optimizations

## Peephole A few Instructions

Local A Basic Block
Intraprocedural/Global A Function/Method
Interprocedural A Program

## Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of "facts"



## Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of "facts"
- Just the initial discovery phase
- Changes can then be made to optimize based on the analysis



## Overview of Dataflow Analysis

- Basic Framework of Set Definitions (for a Basic Block b):
- IN (b): facts true on entry to $b$
- OUT (b): facts true on exit from $b$
- GEN(b): facts created (and not killed) in b
- KILL(b): facts killed in $b$


## Reaching Definitions (A Dataflow Problem)

"What definitions of each variable might reach this point"

- Could be used for:
- Constant Propagation
- Uninitialized Variables

```
int x;
if (y > 0) {
    x = y;
} else {
    x = 0;
}
System.out.println(x);
```


## Reaching Definitions (A Dataflow Problem)

"What definitions of each variable might reach this point"

- Be careful: Does not involve the value of the definition
- The dataflow problem "Available Expressions" is designed for that

```
int x;
if (y > 0) {
    x = y;
} else {
    x = 0;
}
y = -1;
```

still: "x=y", " $x=0 "$ System.out.println(x);

## 1 (a) \& (b)

## Equations for Reaching Definitions

- IN $(b)$ : the definitions reaching upon entering block b
- OUT (b): the definitions reaching upon exiting block b
- GEN ( $b$ ): the definitions assigned and not killed in block b
- KILL(b): the definitions of variables overwritten in block b

$$
\begin{gathered}
\operatorname{IN}(b)=\bigcup_{p \in \operatorname{pred}(b)} \operatorname{OUT}(p) \\
\operatorname{OUT}(b)=\operatorname{GEN}(b) \cup(\operatorname{IN}(b)-\operatorname{KILL}(b))
\end{gathered}
$$

## Another Equivalent Set of Equations (from Lecture):

- Sets:
- DEFOUT (b) : set of definitions in $b$ that reach the end of $b$ (i.e., not subsequently redefined in b)
- SURVIVED ( $b$ ): set of all definitions not obscured by a definition in $b$
- REACHES ( $b$ ) : set of definitions that reach b
- Equations:

$$
\operatorname{REACHES}(\mathrm{b})=\bigcup_{\mathrm{p} \in \operatorname{preds}(\mathrm{~b})} \operatorname{DEFOUT}(\mathrm{p}) \cup
$$

## 1 (c) \& (d)

L0: $\quad a=0$
L1: $b=a+1$
L2: $c=c+b$
L3: $a=b$ * 2
L4: if a < N goto L1
L5: return c

| Block | GEN | KILL | IN (1) | OUT (1) | IN (2) | OUT (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L0 | L0 |  |  |  |  |  |
| L1 | L1 |  |  |  |  |  |
| L2 | L2 |  |  |  |  |  |
| L3 | L3 |  |  |  |  |  |
| L4 |  |  |  |  |  |  |
| L5 |  |  |  |  |  |  |

L0: $\quad a=0$
L1: $b=a+1$
L2: $c=c+b$
L3: $a=b$ * 2
L4: if a < N goto L1
L5: return c

| Block | GEN | KILL | IN (1) | OUT (1) | IN (2) | OUT (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L0 | L0 | L3 |  |  |  |  |
| L1 | L1 |  |  |  |  |  |
| L2 | L2 |  |  |  |  |  |
| L3 | L3 | L0 |  |  |  |  |
| L4 |  |  |  |  |  |  |
| L5 |  |  |  |  |  |  |

L0: $\quad a=0$
L1: $b=a+1$
L2: $c=c+b$
L3: $a=b$ * 2
L4: if a < N goto L1
L5: return c

| Block | GEN | KILL | IN (1) | OUT (1) | IN (2) | OUT (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L0 | L0 | L3 |  |  |  |  |
| L1 | L1 |  | L0 |  |  |  |
| L2 | L2 |  | L0, L1 |  |  |  |
| L3 | L3 | L0 | L0, L1, L2 |  |  |  |
| L4 |  |  | L1, L2, L3 |  |  |  |
| L5 |  |  | L1, L2, L3 |  |  |  |

L0: $\quad a=0$
L1: $b=a+1$
L2: $c=c+b$
L3: $a=b$ * 2
L4: if a < N goto L1
L5: return c

| Block | GEN | KILL | IN (1) | OUT (1) | IN (2) | OUT (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L0 | L0 | L3 |  | L0 |  |  |
| L1 | L1 |  | L0 | L0, L1 |  |  |
| L2 | L2 |  | L0, L1 | L0, L1, L2 |  |  |
| L3 | L3 | L0 | L0, L1, L2 | L1, L2, L3 |  |  |
| L4 |  |  | L1, L2, L3 | L1, L2, L3 |  |  |
| L5 |  |  | L1, L2, L3 | L1, L2, L3 |  |  |

L0: $\quad a=0$
L1: $b=a+1$
L2: $\quad c=c+b$
L3: $a=b$ * 2
L4: if a < N goto L1
L5: return c

| Block | GEN | KILL | IN (1) | OUT (1) | IN (2) | OUT (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L 0$ | $L 0$ | $L 3$ |  | $L 0$ |  | $L 0$ |
| $L 1$ | $L 1$ |  | $L 0$ | $L 0, L 1$ | $L 0, L 1, L 2, L 3$ | $L 0, L 1, L 2, L 3$ |
| $L 2$ | $L 2$ |  | $L 0, L 1$ | $L 0, L 1, L 2$ | $L 0, L 1, L 2, L 3$ | $L 0, L 1, L 2, L 3$ |
| $L 3$ | $L 3$ | $L 0$ | $L 0, L 1, L 2$ | $L 1, L 2, L 3$ | $L 0, L 1, L 2, L 3$ | $L 1, L 2, L 3$ |
| $L 4$ |  |  | $L 1, L 2, L 3$ |
| $L 5$ |  |  | $L 1, L 2, L 3$ |

L0: a = 0
L1: $b=a+1$
L2: $c=c+b$
L3: $a=b$ * 2
L4: if a < N goto L1 convergence!
L5: return c

| Block | GEN | KILL | IN (1) | OUT (1) | IN (2) | OUT (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L 0$ | $L 0$ | $L 3$ |  | $L 0$ |  | $L 0$ |
| $L 1$ | $L 1$ |  | $L 0$ | $L 0, L 1$ | $L 0, L 1, L 2, L 3$ | $L 0, L 1, L 2, L 3$ |
| $L 2$ | $L 2$ |  | $L 0, L 1$ | $L 0, L 1, L 2$ | $L 0, L 1, L 2, L 3$ | $L 0, L 1, L 2, L 3$ |
| $L 3$ | $L 3$ | $L 0$ | $L 0, L 1, L 2$ | $L 1, L 2, L 3$ | $L 0, L 1, L 2, L 3$ | $L 1, L 2, L 3$ |
| $L 4$ |  |  | $L 1, L 2, L 3$ |
| $L 5$ |  |  | $L 1, L 2, L 3$ |

## 2 (a) \& (b)




