
Adventures in

Dataflow Analysis
CSE 401 Section 9-ish

Jack Eggleston, Aaron Johnston, & Nate Yazdani

Announcements

- Code Generation due

Announcements

- Code Generation due

- Compiler Additions due next Thursday, 12/6
- Involves revisiting all parts of the compiler

Announcements

- Code Generation due

- Compiler Additions due next Thursday, 12/6
- Involves revisiting all parts of the compiler

- Final Report due the following Saturday, 12/8
- Ideally, also involves revisiting all parts of the compiler

Review of Optimizations

Front End Back End Target
Code

Source
Code IR

Scanner Parser Semantic
Analysis

Code
GenerationOptimization

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

A Basic Block

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

A Basic Block

A Function/Method

Review of Optimizations

Peephole

Local

Intraprocedural / Global

Interprocedural

A few Instructions

A Basic Block

A Function/Method

A Program

Overview of Dataflow Analysis

IR

Dataflow
Analysis

Optimization

Single Static
Assignment

- A framework for exposing properties about programs

- Operates using sets of “facts”

Overview of Dataflow Analysis

IR

Dataflow
Analysis

Optimization

Single Static
Assignment

- A framework for exposing properties about programs

- Operates using sets of “facts”

- Just the initial discovery phase

- Changes can then be made to optimize based on the
analysis

Overview of Dataflow Analysis

- Basic Framework of Set Definitions (for a Basic Block b):

- IN(b): facts true on entry to b

- OUT(b): facts true on exit from b

- GEN(b): facts created (and not killed) in b

- KILL(b): facts killed in b

Reaching Definitions (A Dataflow Problem)

 “What definitions of each variable might reach this point”

- Could be used for:
- Constant Propagation
- Uninitialized Variables

int x;

if (y > 0) {
 x = y;
} else {
 x = 0;
}

System.out.println(x);“x=y”, “x=0”

Reaching Definitions (A Dataflow Problem)

 “What definitions of each variable might reach this point”

- Be careful: Does not involve the
value of the definition

- The dataflow problem
“Available Expressions”
is designed for that

int x;

if (y > 0) {
 x = y;
} else {
 x = 0;
}

y = -1;
System.out.println(x);still: “x=y”, “x=0”

1 (a) & (b)

Equations for Reaching Definitions

- IN(b): the definitions reaching upon entering block b

- OUT(b): the definitions reaching upon exiting block b

- GEN(b): the definitions assigned and not killed in block b

- KILL(b): the definitions of variables overwritten in block b

IN(b) = ⋃p∈pred(b) OUT(p)

OUT(b) = GEN(b) ∪ (IN(b) – KILL(b))

Another Equivalent Set of Equations (from Lecture):
- Sets:

- DEFOUT(b): set of definitions in b that reach the end of b (i.e., not
subsequently redefined in b)

- SURVIVED(b): set of all definitions not obscured by a definition in b

- REACHES(b): set of definitions that reach b

- Equations:

- REACHES(b) = ⋃p∈preds(b) DEFOUT(p) ⋃

(REACHES(p) ∩ SURVIVED(p))

1 (c) & (d)

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0

L1 L1

L2 L2

L3 L3

L4

L5

 L0: a = 0
 L1: b = a + 1
 L2: c = c + b
 L3: a = b * 2
 L4: if a < N goto L1
 L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L3

L1 L1

L2 L2

L3 L3 L0

L4

L5

 L0: a = 0
 L1: b = a + 1
 L2: c = c + b
 L3: a = b * 2
 L4: if a < N goto L1
 L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L3

L1 L1 L0

L2 L2 L0, L1

L3 L3 L0 L0, L1, L2

L4 L1, L2, L3

L5 L1, L2, L3

 L0: a = 0
 L1: b = a + 1
 L2: c = c + b
 L3: a = b * 2
 L4: if a < N goto L1
 L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L3 L0

L1 L1 L0 L0, L1

L2 L2 L0, L1 L0, L1, L2

L3 L3 L0 L0, L1, L2 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3

 L0: a = 0
 L1: b = a + 1
 L2: c = c + b
 L3: a = b * 2
 L4: if a < N goto L1
 L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L3 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

 L0: a = 0
 L1: b = a + 1
 L2: c = c + b
 L3: a = b * 2
 L4: if a < N goto L1
 L5: return c

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0 L0 L3 L0 L0

L1 L1 L0 L0, L1 L0, L1, L2, L3 L0, L1, L2, L3

L2 L2 L0, L1 L0, L1, L2 L0, L1, L2, L3 L0, L1, L2, L3

L3 L3 L0 L0, L1, L2 L1, L2, L3 L0, L1, L2, L3 L1, L2, L3

L4 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

L5 L1, L2, L3 L1, L2, L3 L1, L2, L3 L1, L2, L3

 L0: a = 0
 L1: b = a + 1
 L2: c = c + b
 L3: a = b * 2
 L4: if a < N goto L1
 L5: return c

Convergence!

2 (a) & (b)

1.
Z = 4 * B
Y = A + C

2.
Y = 5
Z = Y + B

3.
X = A * B
Z = Y + X

4.
X = A * B
Z = Y + X

5.
Y = 3 * B
Z = A + B

6.
Y = 3 * B
X = A * B

7.
Y = 2 * B

1.
Z = 4 * B
Y = A + C

2.
Y = 5
Z = Y + B

3.
X = A * B
Z = Y + X
T1= 3 * B

4.
X = A * B
Z = Y + X
T2= 2 * B

5.
Y = T1
Z = A + B

6.
Y = T1
X = A * B

7.
Y = T2

