
Single Static Assignment
CSE 401 Section 10/10

Jack Eggleston, Aaron Johnston & Nate Yazdani
Adapted from Laura Vonesson’s Wi17 Slides



The Final Stretch

SUN MON TUE WED THU FRI SAT

Compiler
Additions

Report

M501 
Additions

M501
Report

Evals!! 

Review 
Session

(4:30 EEB 045)
Final Exam

(8:30)

Eternal Mastery
of Compilers

You are here



Problem 1
(review of dataflow)



Single Static Assignment
● An intermediate representation where each variable has only one definition:

Original SSA Form

a := x + y
b := a - 1
a := y + b
b := x * 4
a := a + b

a1 := x1 + y1
b1 := a1 - 1
a2 := y1 + b1
b2 := x1 * 4
a3 := a2 + b2



SSA: Why We Love It
● Without SSA, all definitions and uses of a variable get mixed together

○ Computing information about the definitions of a variable is an expensive but necessary 
part of many dataflow analyses



SSA: Why We Love It
● Without SSA, all definitions and uses of a variable get mixed together

○ Computing information about the definitions of a variable is an expensive but necessary 
part of many dataflow analyses

● Doing the work of converting to SSA once makes many analyses + optimizations more 
efficient

○ SSA can be thought of as an implicit representation of Definition/Use chains



● Ex: Dead Store Elimination

○ Without SSA: Compute live variables at every point, which requires working backwards 
and using the dataflow sets to check for any path that does not kill the variable, and 
eliminate any stores that are not to a live variable.

○ With SSA: Eliminate any store where the variable being assigned has 0 uses.

SSA: Why We Love It



Phi-Functions
● A method of representing an uncertain value for a certain definition

○ Not a “real” instruction -- only a formality needed for SSA

Original SSA Form



Dominators
● A node X dominates a node Y iff every path from the entry point of the control flow 

graph to Y includes X

0

1 2

3

4

Node 1 dominates nodes 1 and 3. 
It does not dominate 4 because 
there is another path that reaches 
it.



Strict Dominance
● A node X strictly dominates a node Y if X dominates Y and X ≠ Y.

0

1 2

3

4

Node 1 only strictly dominates 
node 3 because it is the only 
dominated node that is not equal 
to 1.



Dominance Frontiers
● A node Y is in the dominance frontier of 

node X if X dominates an immediate 
predecessor of Y but X does not strictly 
dominate Y.

● Essentially, the border between 
dominated and non-dominated nodes

○ Note: a node can be in its own dominance 
frontier

● This is where phi function merging is 
necessary

0

1 2

3

4

Node 4 is in the 
dominance frontier of 
node 1 because an 
immediate 
predecessor (node 3) 
is dominated by 1.



Problem 2



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0

1

2

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0

1

2

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5

1

2

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1

2

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1

2

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1 2, 3

2

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1 2, 3 5

2

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1 2, 3 5

2 ∅ 5

3

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1 2, 3 5

2 ∅ 5

3 ∅ 5

4

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1 2, 3 5

2 ∅ 5

3 ∅ 5

4 ∅ 4, 5

5



0

4

1

32

5

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3, 4, 5 ∅

1 2, 3 5

2 ∅ 5

3 ∅ 5

4 ∅ 4, 5

5 ∅ ∅



Problem 3



a = c + 2
d = a + b

c = b - d
e = c + a

b = a + c

d = b * 2
g = 2 * 2

d = b + 1

i = i + 1
c = d >> 4

f = e + d
d = c + b

B0

B1 B2

B3
B4

B5

B6



a1 = Φ(a0, a2)
d1 = Φ(d0, d7)
f1 = Φ(f0, f2)
c1 = Φ(c0, c4)
e1 = Φ(e0, e3)
b1 = Φ(b0, b3)
i1 = Φ(i0, i3)
g1 = Φ(g0, g4)
a2 = c1 + 2
d2 = a2 + b1

c2 = b1 - d2
e2 = c2 + a2

b2 = a2 + c1

d3 = b2 * 2
g2 = 2 * 2

d4 = b2 + 1

d5 = Φ(d3, d4)
g3 = Φ(g1, g2)
i2 = i1 + 1
c3 = d5 >> 4

c4 = Φ(c2, c3)
e3 = Φ(e1, e2)
b3 = Φ(b1, b2)
i3 = Φ(i1, i2)
d6 = Φ(d2, d5)
g4 = Φ(g1, g3)
f2 = e3 + d6
d7 = c4 + b3

B

0

B

1

B

2

B

3

B

4

B

5

B

6

Solution



a = c + 2
d = a + b

c = b - d
e = c + a

b = a + c

d = b * 2
g = 2 * 2

d = b + 1

i = i + 1
c = d >> 4

f = e + d
d = c + b

B0

B1 B2

B3
B4

B5

B6

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3,
4, 5, 6 0

1 ∅ 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Step 1: Compute Dominance Frontiers



a = c + 2
d = a + b

c = b - d
e = c + a

b = a + c

d = b * 2
g = 2 * 2

d = b + 1

i = i + 1
c = d >> 4

f = e + d
d = c + b

B0

B1 B2

B3
B4

B5

B6

Need to merge:
a,d,f

Need to merge:
d,g

Need to merge:
c,e,b,i

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3,
4, 5, 6

0

1 ∅ 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Step 2: Determine Necessary Merges
Each node in the dominance frontier of node X will 
merge definitions created in node X



a = c + 2
d = a + b

c = b - d
e = c + a

b = a + c

d = b * 2
g = 2 * 2

d = b + 1

i = i + 1
c = d >> 4

f = e + d
d = c + b

B0

B1 B2

B3
B4

B5

B6

Need to merge:
a,d,f,c,e,b,i

Need to merge:
d,g

Need to merge:
c,e,b,i,d,g

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3,
4, 5, 6

0

1 ∅ 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Step 3: Continue Computing Merges
Each merge will create a new definition, and that 
definition may need to be merged again -- continue until 
there are no changes



a = c + 2
d = a + b

c = b - d
e = c + a

b = a + c

d = b * 2
g = 2 * 2

d = b + 1

i = i + 1
c = d >> 4

f = e + d
d = c + b

B0

B1 B2

B3
B4

B5

B6

Need to merge:
a,d,f,c,e,b,i,g

Need to merge:
d,g

Need to merge:
c,e,b,i,d,g

NODE STRICTLY DOMINATES DOMINANCE FRONTIER

0 1, 2, 3,
4, 5, 6

0

1 ∅ 6

2 3, 4, 5 6

3 ∅ 5

4 ∅ 5

5 ∅ 6

6 ∅ 0

Step 3: Continue Computing Merges
Each merge will create a new definition, and that 
definition may need to be merged again -- continue until 
there are no changes



a = c + 2
d = a + b

B0

Need to merge:
a,d,f,c,e,b,i,g

Step 4: Write SSA Definitions
Merges go first, and each successive definition of a 
variable should increment its index by 1.

a1 = Φ(a0, a2)
d1 = Φ(d0, d7)
f1 = Φ(f0, f2)
c1 = Φ(c0, c4)
e1 = Φ(e0, e3)
b1 = Φ(b0, b3)
i1 = Φ(i0, i3)
g1 = Φ(g0, g4)
a2 = c1 + 2
d2 = a2 + b1

B0



c2 = b1 - d2
e2 = c2 + a2

B1

Nothing to merge

Step 4: Write SSA Definitions
Merges go first, and each successive definition of a 
variable should increment its index by 1.

c = b - d
e = c + a

B1



b2 = a2 + c1B2

Nothing to merge

Step 4: Write SSA Definitions
Merges go first, and each successive definition of a 
variable should increment its index by 1.

b = a + c B2



d3 = b2 * 2
g2 = 2 * 2

B3

Nothing to merge

Step 4: Write SSA Definitions
Merges go first, and each successive definition of a 
variable should increment its index by 1.

d = b * 2
g = 2 * 2 B3



B4

Nothing to merge

Step 4: Write SSA Definitions
Merges go first, and each successive definition of a 
variable should increment its index by 1.

d = b + 1 B4
d4 = b2 + 1



B5

Step 4: Write SSA Definitions
Merges go first, and each successive definition of a 
variable should increment its index by 1.

i = i + 1
c = d >> 4

B5

d5 = Φ(d3, d4)
g3 = Φ(g1, g2)
i2 = i1 + 1
c3 = d5 >> 4

Need to merge:
d,g



B6

Step 4: Write SSA Definitions
Merges go first, and each successive definition of a 
variable should increment its index by 1.

f = e + d
d = c + b

B6

c4 = Φ(c2, c3)
e3 = Φ(e1, e2)
b3 = Φ(b1, b2)
i3 = Φ(i1, i2)
d6 = Φ(d2, d5)
g4 = Φ(g1, g3)
f2 = e3 + d6
d7 = c4 + b3

Need to merge:
c,e,b,i,d,g



Thanks for a Great Quarter!
- The 401 18au Staff :)


