
CSE 401/M501 – Compilers

Overview and Administrivia
Hal Perkins
Spring 2018

UW CSE 401/M501 Spring 2018 A-1

Agenda

• Introductions
• Administrivia
• What’s a compiler?
• Why you want to take this course

UW CSE 401/M501 Spring 2018 A-2

Who: Course staff
• Instructor: Hal Perkins: UW faculty for many

years; CSE 401 veteran (+ other compiler courses)

• TAs: Aaron Johnston, Laura Vonessen, &
Nate Yazdani

• Get to know us – we’re here to help you succeed!

• Office hours tbd shortly – trying for most
afternoons. Questions:
– In the lab or separate TA room?
– Right after class or later in the afternoon?

UW CSE 401/M501 Spring 2018 A-3

Credits

• Some direct ancestors of this course:

– UW CSE 401 (Chambers, Snyder, Notkin, Perkins,

Ringenburg, Henry, …)

– UW CSE PMP 582/501 (Perkins)

– Rice CS 412 (Cooper, Kennedy, Torczon)

– Cornell CS 412-3 (Teitelbaum, Perkins)

– Many books (Appel; Cooper/Torczon; Aho, [[Lam,]

Sethi,] Ullman [Dragon Book], Fischer, [Cytron ,]

LeBlanc; Muchnick, …)

• [Won’t attempt to attribute everything – and

some of the details are lost in the haze of time.]

UW CSE 401/M501 Spring 2018 A-4

CSE M501

• New this year – “enhanced” version for 5th-
year Master’s students. Welcome!

• M501 will be an “official” course sometime
during the quarter & everyone who should be
in it will have their registration automagically
changed.

• M501 students will have to do a significant
addition to the project, or (maybe) some
other extra work if agreed with instructor

UW CSE 401/M501 Spring 2018 A-5

So whadda ya know?

• Official prerequisites:

– CSE 332 (data abstractions)

• and therefore CSE 311 (Foundations)

– CSE 351 (hardware/software interface, x86_64)

• Also useful, but not required:

– CSE 331 (software design & implementation)

– CSE 341 (programming languages)

– Who’s taken these?

UW CSE 401/M501 Spring 2018 A-6

Lectures & Sections
• Both required

• All material posted, but they are visual aids
– Arrive punctually and pay attention (& take notes!)
– If doing so doesn’t save you time, one of us is messing up!

• Sections: additional examples and exercises plus
project details and tools

• Additional project and other material posted

UW CSE 401/M501 Spring 2018 A-7

Staying in touch
• Course web site
• Discussion board – a google group
– Uses your “UW Google identity” (not cse) because of

how we sync with the UW registrar enrollment data
– For anything related to the course
– Join in! Help each other out. Staff will contribute.

• Mailing list
– You are automatically subscribed if you are registered
– Will keep this fairly low-volume; limited to things that

everyone needs to read

UW CSE 401/M501 Spring 2018 A-8

Requirements & Grading

• Roughly
– 50% project, done with a partner
• (CSEM students should pair up with each other)

– 15% individual written homework
– 15% midterm exam
– 20% final exam
We reserve the right to adjust as needed

UW CSE 401/M501 Spring 2018 A-9

Academic Integrity
• We want a collegial group helping each other succeed!
• But: you must never misrepresent work done by

someone else as your own, without proper credit if
appropriate, or assist others to do the same

• Read the course policy carefully
• We trust you to behave ethically
– I have little sympathy for violations of that trust
– Honest work is the most important feature of a university

(or engineering or business). Anything less disrespects
your instructor, your colleagues, and yourself

UW CSE 401/M501 Spring 2018 A-10

Course Project

• Best way to learn about compilers is to build one
• Course project
– MiniJava compiler: classes, objects, etc.

• Core parts of Java – essentials only
• Originally from Appel textbook (but you won’t need that)

– Generate executable x86-64 code & run it
– Completed in steps through the quarter

• Where you wind up at the end is the most important part,
but there are intermediate milestone deadlines to keep you
on schedule and provide feedback at important points

– Additional work here for M501 students – details tba

UW CSE 401/M501 Spring 2018 A-11

Project Groups
• You should work in pairs
– Pick a partner now to work with throughout quarter –

will need this info early next week
– If you are in M501 you should pair up with someone

else in that group

• We’ll provide accounts on department gitlab
server for groups to store and synchronize their
work & we’ll get files from there for
grading/feedback
– Anybody new to CSE Gitlab/Git?

UW CSE 401/M501 Spring 2018 A-12

Books

• Four good books; will put on reserve in

the engineering library if anyone wants:

– Cooper & Torczon, Engineering a Compiler.
“Official text” & we’ll have some

assignments from here

– Appel, Modern Compiler Implementation in
Java, 2nd ed. MiniJava is from here.

– Aho, Lam, Sethi, Ullman, “Dragon Book”

– Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE 401/M501 Spring 2018 A-13

And the point is…

• How do we execute something like this?
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• The computer only knows 1’s & 0’s - i.e.,
encodings of instructions and data

UW CSE 401/M501 Spring 2018 A-14

Structure of a Compiler

• At a high level, a compiler has two pieces:
– Front end: analysis
• Read source program and discover its structure and

meaning
– Back end: synthesis
• Generate equivalent target language program

UW CSE 401/M501 Spring 2018 A-15

Source TargetFront End Back End

Compiler must…

• Recognize legal programs (& complain about illegal
ones)

• Generate correct code
– Compiler can attempt to improve (“optimize”) code, but

must not change behavior (meaning)
• Manage runtime storage of all variables/data
• Agree with OS & linker on target format

UW CSE 401/M501 Spring 2018 A-16

Source TargetFront End Back End

Implications

• Phases communicate using some sort of
Intermediate Representation(s) (IR)
– Front end maps source into IR
– Back end maps IR to target machine code
– Often multiple IRs – higher level at first, lower level in later

phases

UW CSE 401/M501 Spring 2018 A-17

Source TargetFront End Back End

Front End

• Usually split into two parts
– Scanner: Responsible for converting character stream to

token stream: keywords, operators, variables, constants, …
• Also: strips out white space, comments

– Parser: Reads token stream; generates IR
• Either here or shortly after, perform semantics analysis to check

for things like type errors, etc.

• Both of these can be generated automatically
– Use a formal grammar to specify the source language
– Tools read the grammar and generate scanner & parser

(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE 401/M501 Spring 2018 A-18

Scanner Parsersource tokens IR

Scanner Example
• Input text

// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most languages –
counterexamples: Python indenting, Ruby newlines)
• Tokens may carry associated data (e.g., int value, variable name)

UW CSE 401/M501 Spring 2018 A-19

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Output (IR)
• Given token stream from scanner, the parser

must produce output that captures the meaning
of the program

• Most common output from a parser is an abstract
syntax tree
– Essential meaning of program without syntactic noise
– Nodes are operations, children are operands

• Many different forms
– Engineering tradeoffs have changed over time
– Tradeoffs (and IRs) can also vary between different

phases of a single compiler

UW CSE 401/M501 Spring 2018 A-20

Parser Example

• Token Stream • Abstract Syntax Tree

UW CSE 401/M501 Spring 2018 A-21

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
// this statement does very little
if (x >= y) y = 42;

Static Semantic Analysis
• During or after parsing, check that the program is

legal and collect info for the back end
– Type checking
– Check language requirements like proper declarations,

etc.
– Preliminary resource allocation
– Collect other information needed by back end analysis

and code generation
• Key data structure: Symbol Table(s)
– Maps names -> meaning/types/details

UW CSE 401/M501 Spring 2018 A-22

Back End

• Responsibilities
– Translate IR into target machine code
– Should produce “good” code
• “good” = fast, compact, low power (pick some)
• Optimization phase translates correct code into

semantically equivalent “better” code
– Should use machine resources effectively
• Registers
• Instructions
• Memory hierarchy

UW CSE 401/M501 Spring 2018 A-23

Back End Structure

• Typically split into two major parts
– “Optimization” – code improvement
• Examples: common subexpression elimination,

constant folding, code motion (move invariant
computations outside of loops)
• Optimization phases often interleaved with analysis

– Target Code Generation (machine specific)
• Instruction selection & scheduling, register allocation

– Usually walk the AST to generate lower-level
intermediate code before optimization

UW CSE 401/M501 Spring 2018 A-24

The Result

• Input
if (x >= y)

y = 42;

• Output

movl 16(%rbp),%edx
movl -8(%rbp),%eax
cmpl %eax, %edx
jl L17
movl $42, -8(%rbp)

L17:

UW CSE 401/M501 Spring 2018 A-25

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Interpreters & Compilers

• Programs can be compiled or interpreted (or
sometimes both)

• Compiler
– A program that translates a program from one

language (the source) to another (the target)
• Languages are sometimes even the same(!)

• Interpreter
– A program that reads a source program and produces

the results of executing that program on some input

UW CSE 401/M501 Spring 2018 A-26

Common Issues

• Compilers and interpreters both must read the
input – a stream of characters – and
“understand” it: front-end analysis phase

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

UW CSE 401/M501 Spring 2018 A-27

Compiler

• Read and analyze entire program
• Translate to semantically equivalent program

in another language
– Presumably easier or more efficient to execute

• Offline process
• Tradeoff: compile-time overhead

(preprocessing) vs execution performance

UW CSE 401/M501 Spring 2018 A-28

Typically implemented with Compilers

• FORTRAN, C, C++, COBOL, many other
programming languages, (La)TeX, SQL
(databases), VHDL, many others

• Particularly appropriate if significant
optimization wanted/needed

UW CSE 401/M501 Spring 2018 A-29

Interpreter
• Interpreter
– Typically implemented as an “execution engine”
– Program analysis interleaved with execution:

running = true;
while (running) {

analyze next statement;
execute that statement;

}
– Usually requires repeated analysis of individual

statements (particularly in loops, functions)
• But hybrid approaches can avoid some of this overhead

– But: immediate execution, good debugging/interaction,
etc.

UW CSE 401/M501 Spring 2018 A-30

Often implemented with interpreters

• Javascript, PERL, Python, Ruby, awk, sed,
shells (bash), Scheme/Lisp/ML/OCaml,
postscript/pdf, machine simulators

• Particularly efficient if interpreter overhead is
low relative to execution cost of individual
statements
– But even if not (machine simulators), flexibility,

immediacy, or portability may be worth it

UW CSE 401/M501 Spring 2018 A-31

Hybrid approaches
• Compiler generates byte code intermediate

language, e.g. compile Java source to Java Virtual
Machine .class files, then

• Interpret byte codes directly, or
• Compile some or all byte codes to native code
– Variation: Just-In-Time compiler (JIT) – detect hot spots

& compile on the fly to native code
• Also wide use for Javascript, many functional and

other languages (Haskell, ML, Racket, Ruby), C#
and Microsoft Common Language Runtime, others

UW CSE 401/M501 Spring 2018 A-32

Why Study Compilers? (1)

• Become a better programmer(!)

– Insight into interaction between languages, compilers,
and hardware

– Understanding of implementation techniques, how
code maps to hardware

– Better intuition about what your code does

– Understanding how compilers optimize code helps
you write code that is easier to optimize

• And avoid wasting time doing “optimizations” that the
compiler will do as well or better – particularly if you don’t
try to get too clever

UW CSE 401/M501 Spring 2018 A-33

Why Study Compilers? (2)

• Compiler techniques are everywhere
– Parsing (“little” languages, interpreters, XML)
– Software tools (verifiers, checkers, …)
– Database engines, query languages
– Domain-specific languages
– Text processing
• Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools
– Mathematics (Mathematica, Matlab, SAGE)

UW CSE 401/M501 Spring 2018 A-34

Why Study Compilers? (3)
• Fascinating blend of theory and engineering
– Lots of beautiful theory around compilers

• Parsing, scanning, static analysis
– Interesting engineering challenges and tradeoffs,

particularly in optimization (code improvement)
• Ordering of optimization phases
• What works for some programs can be bad for others

– Plus some very difficult problems (NP-hard or worse)
• E.g., register allocation is equivalent to graph coloring
• Need to come up with good-enough

approximations/heuristics

UW CSE 401/M501 Spring 2018 A-35

Why Study Compilers? (4)
• Draws ideas from many parts of CSE
– AI: Greedy algorithms, heuristic search
– Algorithms: graphs, dynamic programming, approximation
– Theory: Grammars, DFAs and PDAs, pattern matching,

fixed-point algorithms
– Systems: Allocation & naming, synchronization, locality
– Architecture: pipelines, instruction set use, memory

hierarchy management, locality

UW CSE 401/M501 Spring 2018 A-36

Why Study Compilers? (5)

• You might even write a compiler some day!

• You will write parsers and interpreters for little
languages, if not bigger things
– Command languages, configuration files, XML,

network protocols, …

• And if you like working with compilers and are
good at it there are many jobs available…

UW CSE 401/M501 Spring 2018 A-37

Any questions?

• Your job is to ask questions to be sure you
understand what’s happening and to slow me
down
– Otherwise, I’ll barrel on ahead J

UW CSE 401/M501 Spring 2018 A-43

Coming Attractions

• Quick review of formal grammars
• Lexical analysis – scanning & regular

expressions
– Background for first part of the project

• Followed by parsing …

• Start reading: ch. 1, 2.1-2.4

UW CSE 401/M501 Spring 2018 A-44

Before next time…
• If you are trying to add the class please watch for

an opening and grab one when it shows up

• Familiarize yourself with the course web site

• Read syllabus and academic integrity policy

• Find a partner!
– And meet other people in the class too!! J

UW CSE 401/M501 Spring 2018 A-45

