CSE 401/M501 – Compilers

LR Parser Construction Hal Perkins Spring 2018

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular
 - So a DFA can be used to recognize handles
 - LR Parser reduces when DFA accepts a handle

Prefixes, Handles, &c (review)

- If S is the start symbol of a grammar G,
 - If *S* =>* α then α is a *sentential form* of *G*
 - γ is a *viable prefix* of *G* if there is some derivation S =>*_{rm} $\alpha Aw =>$ *_{rm} $\alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 - The occurrence of β in $\alpha\beta w$ is a *handle* of $\alpha\beta w$
- An *item* is a marked production (a . at some position in the right hand side)

- [A ::= . X Y] [A ::= X . Y] [A ::= X Y .]

Building the LR(0) States

- Example grammar
 - S' ::= S \$ S ::= (L) S ::= x L ::= S L ::= L, S
 - We add a production S' with the original start symbol followed by end of file (\$)
 - We accept if we reach the end of this production
 - Question: What language does this grammar generate?

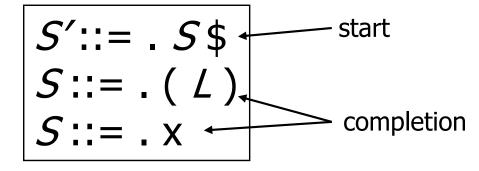
Start of LR Parse

S'::= S\$
 S::= (L)
 S::= x
 L::= S
 L::= L, S

- Initially
 - Stack is empty
 - Input is the right hand side of S', i.e., S \$
 - Initial configuration is $[S' ::= . S \$
 - But, since position is just before S, we are also just before anything that can be derived from S

Initial state

S'::= S\$
 S::= (L)
 S::= x
 L::= S
 L::= L, S



- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

Shift Actions (1)

$$S'::= . S$$

$$S::= . (L) \xrightarrow{\times} S::= x .$$

$$S::= . x$$

- To shift past the x, add a new state with appropriate item(s), including their closure
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

Shift Actions (2)

$$S'::= . S \ (L) \ S::= . (L) \ S::= . X \ S::=$$

- If we shift past the (, we are at the beginning of L
- The closure adds all productions that start with *L*, which also requires adding all productions starting with *S*

Goto Actions

S'::= S\$
 S::= (L)
 S::= x
 L::= S
 L::= L, S

$$S'::= . S \ S':= . (L) \qquad S':= S \ S':$$

 Once we reduce S, we'll pop the rhs from the stack exposing the first state. Add a goto transition on S for this.

Basic Operations

• Closure (S)

Adds all items implied by items already in S

- Goto (I, X)
 - I is a set of items
 - X is a grammar symbol (terminal or non-terminal)
 - Goto moves the dot past the symbol X in all appropriate items in set I

Closure Algorithm

• *Closure* (*S*) =

repeat

for any item $[A ::= \alpha . B \beta]$ in *S* for all productions $B ::= \gamma$ add $[B ::= . \gamma]$ to *S* until *S* does not change return *S*

• Classic example of a fixed-point algorithm

Goto Algorithm

• Goto (I, X) =

set *new* to the empty set for each item $[A ::= \alpha . X \beta]$ in *I* add $[A ::= \alpha X . \beta]$ to *new* return *Closure* (*new*)

• This may create a new state, or may return an existing one

LR(0) Construction

- First, augment the grammar with an extra start production S' ::= S \$
- Let T be the set of states
- Let *E* be the set of edges
- Initialize *T* to *Closure* ([*S*' ::= . *S* \$])
- Initialize *E* to empty

LR(0) Construction Algorithm

repeat for each state *I* in *T* for each item [$A ::= \alpha . X \beta$] in *I* Let *new* be *Goto*(*I*, *X*) Add *new* to *T* if not present Add *I* \xrightarrow{X} *new* to *E* if not present until *E* and *T* do not change in this iteration

 Footnote: For symbol \$, we don't compute goto(I, \$); instead, we make this an accept action.

Example: States for

0. S'::= S\$
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L, S

Building the Parse Tables (1)

- For each edge $I \xrightarrow{X} J$
 - if X is a terminal, put sj in column X, row I of the action table (shift to state j)
 - If X is a non-terminal, put gj in column X, row I of the goto table

Building the Parse Tables (2)

- For each state / containing an item
 [S' ::= S . \$], put accept in column \$ of row /
- Finally, for any state containing

 [A ::= γ .] put action rn (reduce) in every column of row I in the table, where n is the production number

Example: Tables for

0. S'::= S\$
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L, S

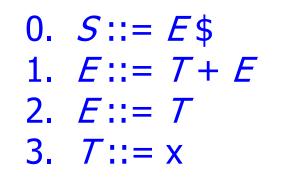
Where Do We Stand?

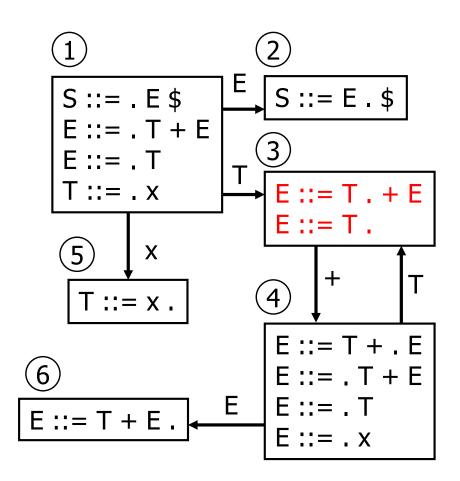
- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same
- A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts.

A Grammar that is not LR(0)

- Build the state machine and parse tables for a simple expression grammar
 - S ::= E \$ E ::= T + E E ::= T T ::= x

LR(0) Parser for





	Х	+	\$	Е	Т
1	s5			g2	g3
2			асс		
3	r2	s4,r2	r2		
4	s5			g6	g3
5	r3	r3	r3		
6	r1	r1	r1		

- State 3 is has two possible actions on +
 - shift 4, or reduce 2
- ∴ Grammar is not LR(0)

How can we solve conflicts like this?

- Idea: look at the next symbol after the handle before deciding whether to reduce
- Easiest: SLR Simple LR. Reduce only if next input terminal symbol could follow resulting nonterminal
- More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a *particular instance* of a reduction
 - LALR used by YACC/Bison/CUP; we won't examine in detail

SLR Parsers

- Idea: Use information about what can follow a nonterminal to decide if we should perform a reduction; don't reduce if the next input symbol can't follow the resulting non-terminal
- We need to be able to compute FOLLOW(A) the set of symbols that can follow A in any possible derivation
 - i.e., t is in FOLLOW(A) if any derivation contains At
 - To compute this, we need to compute FIRST(γ) for strings γ that can follow A

Calculating FIRST(γ)

- Sounds easy... If γ = X Y Z, then FIRST(γ) is FIRST(X), right?
 - But what if we have the rule $X := \epsilon$?
 - In that case, FIRST(γ) includes anything that can follow
 X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y
 can derive ε, FIRST(Z), and if Z can derive ε, ...
 - So computing FIRST and FOLLOW involves knowing
 FIRST and FOLLOW for other symbols, as well as which ones can derive ε.

FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin strings derived from γ
 - For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings γ
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)

Initialization

set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a

- Repeatedly apply four simple observations to update these sets
 - Stop when there are no further changes
 - Another fixed-point algorithm

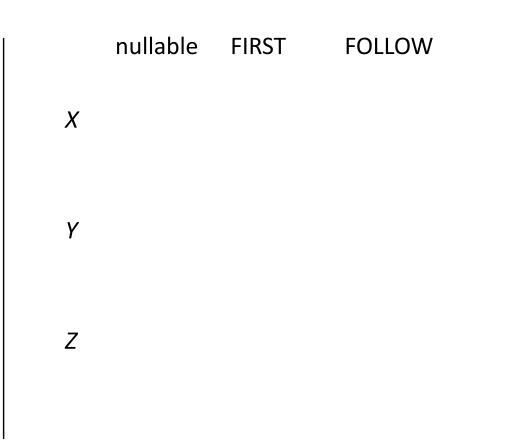
Computing FIRST, FOLLOW, and nullable (2)

repeat for each production $X := Y_1 Y_2 \dots Y_k$ if $Y_1 \dots Y_k$ are all nullable (or if k = 0) set nullable[X] = true for each *i* from 1 to k and each *j* from *i* +1 to k if $Y_1 \dots Y_{i-1}$ are all nullable (or if i = 1) add FIRST[Y_i] to FIRST[X] if $Y_{i+1} \dots Y_k$ are all nullable (or if i = k) add FOLLOW[X] to FOLLOW[Y_i] if $Y_{i+1} \dots Y_{i-1}$ are all nullable (or if i+1=j) add FIRST[Y_i] to FOLLOW[Y_i] Until FIRST, FOLLOW, and nullable do not change

Example

• Grammar

Z ::= d Z ::= X Y Z Y ::= ε Y ::= c X ::= Y X ::= a



LR(0) Reduce Actions (review)

- In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol
- Algorithm:

```
Initialize R to empty
```

```
for each state I in T
```

```
for each item [A ::= \alpha .] in I
```

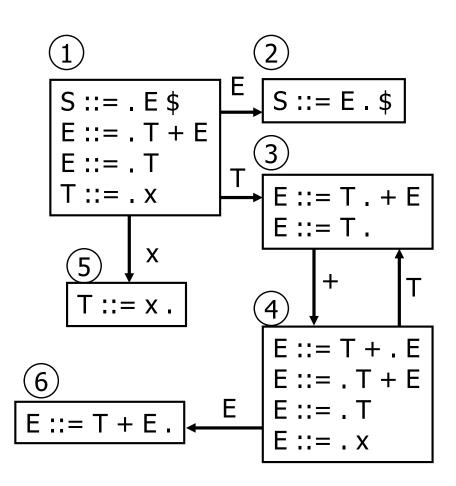
add (*I*, $A ::= \alpha$) to R

SLR Construction

- This is identical to LR(0) states, etc., except for the calculation of reduce actions
- Algorithm: Initialize *R* to empty for each state *I* in *T* for each item [*A* ::= α .] in *I* for each terminal a in FOLLOW(*A*) add (*I*, a, *A* ::= α) to *R* – i.e., reduce α to *A* in state *I* only on lookahead a

SLR Parser for

S ::= E \$
 E ::= T + E
 E ::= T
 T ::= x



	х	+	\$	Е	т
1	s5			g2	g3
2			асс		
3	r2	s4 ,r2	r2		
4	s5			g6	g3
5	13	r3	r3		
6	ſĹ	ſĹ	r1		

On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An LR(1) item [$A ::= \alpha \cdot \beta$, a] is
 - A grammar production (A ::= $\alpha\beta$)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from $\beta a.$
- Full construction: see the book

LR(1) Tradeoffs

- LR(1)
 - Pro: extremely precise; largest set of grammars
 - Con: potentially *very* large parse tables with many states

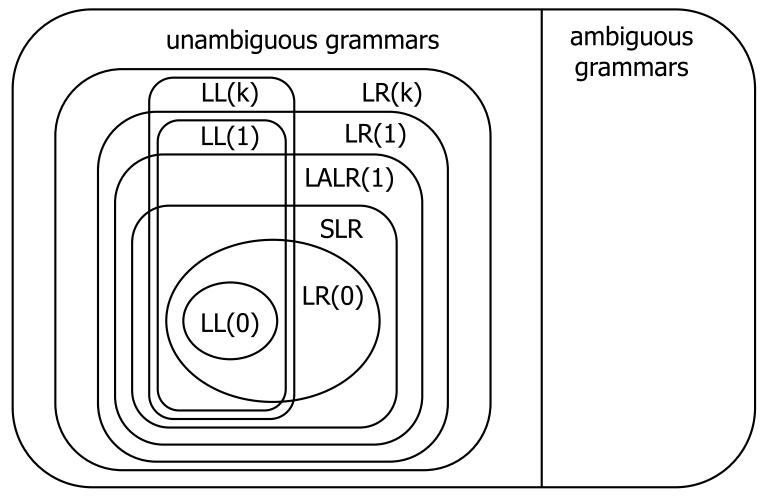
LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
 - Example: these two would be merged

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
 - Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful
 - After the merge step, acts like SLR parser with "smarter"
 FOLLOW sets (may be specific to particular handles)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)
- Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)

Language Heirarchies



UW CSE 401/M501 Spring 2018

Coming Attractions

Lecture

- LL(k) Parsing Top-Down
- Recursive Descent Parsers
 - What you can do if you want a parser in a hurry

Sections

- AST construction what do do while you parse!
- Visitor Pattern how to traverse ASTs for further processing (type checking, code generation, ...)