Clayton Chang

Justin McCarron

Vincent Pai

CSE403

ChatInTheHat Project Proposal

Operational Concepts

ChatInTheHat is a chat client that merges instant messaging with chat channels more commonly associated with online games or mIRC. It will have the functionality of a normal instant messaging program. Users will be able to log in and log out, and see what other people are logged in at the time. They will be able to send messages to one another like in any other instant messaging program. Messages up to a certain length sent to offline users will be stored and delivered to them when they log on next time. In addition, users will be able to arbitrarily group up other users and assign different groups to specific chat channels. Text entered into a certain channel will then be sent to all the users in the corresponding group. Giving this “mailing list” type functionality to an instant messenger offers real-time communication that can be easily directed to specific subsets of users. If you’ve ever wanted to send the same instant message to a large audience all at once, this product is for you. While one-to-one instant messaging and chat rooms are common, the combination of the two within one window is not.
System Requirements

 An intuitive and easily navigable UI is vital for any instant messaging program, especially one that can send messages to large groups at once. Mailing list style instant messaging would be useless if users end up spending too much time deciphering what messages are being sent, as well as the source and destination of these messages.

ChatInTheHat offers an AIM-like buddy list and the ability to see all users currently logged into the server. An additional feature may grant users the ability to hide their status from certain unsavory individuals or groups.

Chatting and messaging can take place within the same window, as channel tags indicate the source and/or destination of all messages. The user can easily switch channels (and thus the recipient(s) of any further messages) by using the channel select buttons to the right of the text input box. Unassigned channels may be filled by editing the channel selecting group members from the list of available users, taken from the server list of known names.

In addition to the core messaging service, additional features may be considered if time is available during the development process. Picture-chat, multiple windows, tabbed windows, auto-response, user status messages, or a simple game would all be useful.
[image: image1.png]Ct
Fie.

nThel

E] P

[Steve] all your base are belong to us
[Bob] you finished your 403 yet?

[To Bob] : yes, because | am a good little student!
[Bob] O RLY?

[To Bob] : YARLY!

[@ Burninators] : ..and all the thatched roof cottages?
[Trog @Burninators] YES!

To [ALL] : Hello World!

System and Software Architecture

[image: image2]

A client-server architecture is appropriate for any instant messaging program. A server side program will handle administrative details for clients connecting to chat.

The server will handle incoming connections from client side applications. It will keep track of online users and periodically send updated statistics to the clients. The server will also serve as a sort of router. Client programs will send messages and their corresponding destinations to the server which will redirect them to the appropriate end node or nodes. It will also serve as a storage unit that can hold messages sent to an offline user. It will deliver these messages at a later time when the user returns to an online status.

The client side application is primarily for the user interface. Its goal is to provide a simple yet powerful communication tool. Regardless of UI functions or different chat features, all client side messages will be sent to the server for processing; there will be no support for client to client connections.
Lifecycle Plan

This project may be developed using a type of staged-delivery lifecycle model. In the first phase of the project, the group will attempt to clarify the goals of our application to produce a more refined high-level vision of the product (in terms of features visible to the user) from which requirements and specifications may be drawn.

With the new set of specifications, additional decision-making will need to be made regarding the technologies to be used. Once the team has decided which languages, libraries, and/or APIs are best suited to handle the requirements of the project, the team will be divided into subgroups to handle the specifics of the client-user interface, server interface, and client-server networking code.

Both subgroups will then work to design and develop a first prototype containing the core features of the product (namely, clients being able to communicate with one another via the server). Testing and debugging will be done on each component and the release as a whole.

After completing the first prototype, additional features will be added in subsequent stages to produce a final product which most closely resembles the original vision of the application as determined in the first phase of the project.

The major design decisions regarding the anticipated feature set of the product should be made within the first week so that all members of the team have a consistent view of the requirements and specifications. There will likely be some overlap with the second phase, as individual members look into available technologies and propose those which they believe to potentially be the most useful and intuitive.

The second week of production will be spent dividing work among the subgroups. Each subgroup will then lay out a more detailed plan for the features of the core build for which they are responsible. A meeting toward the end of the second week will allow the subgroups to address issues arriving out of group-specific meetings and design.

The third and fourth weeks should be spent coding and debugging the first prototype release. If any team completes their portion of the work early, they may attempt to assist other teams or begin planning for the next feature set.

Weeks five through eight will be dedicated to the addition of features such as group management, server-side storage of messages, picture-based messaging, and any additional features suggested during the early phases of the project. Testing will be conducted in between each prototype release to ensure that a quality product is produced during each iteration, with emphasis placed on bug fixing rather than new features.

The project team will require at least five people, with two or more dedicated to the graphical user interface of the client program (preferably with experience using Java’s swing library), two to handle network communication between the client and server applications (preferably with some Java networking experience), and at least one other to handle server-side algorithms and file management. Team members will hopefully have Java experience or extensive experience developing similar applications for a different platform.

Feasibility Rationale

We believe that the project can be completed successfully because the core networking features only require the transmission of text between clients and the server. Prior experience working with Java and developing basic user interfaces provides a bit of a head start on completing the client application; instead of learning GUI programming from scratch, time and effort may be spent optimizing the chat interface. The addition of picture-based messaging will also be made easier with solid understanding of the utilized Java graphics library.
The primary risk that we are taking is that we will be unable to implement all of our proposed core features in the allotted eight weeks and will have to cut some of them. This set of features was formed with the strict deadline in mind; their completion is intended to be feasible even with unforeseen complications arising during development. Another risk that we are taking is that since this project proposal was written by only three people, in the event that the three of us are actually assigned to implement this project we might be assigned project partners with whom we do not work well.

Our primary assumption is that we will not encounter any unforeseen software limitations – that is to say, we will be able to implement all of our proposed features using the aforementioned java tools.
The big shortcut we are taking is that our program will not contain many of the features that are included in commercial instant messaging programs such as AIM, Yahoo, and MSN instant messenger. The features which will not be implemented in our chat program include but are not limited to e-mail, phone calls, and news and weather reports.

 Client

 Client

 Client

 Server

