Clip Option:
Purpose by Maetapong Upatising
Operational Concept
Overview:

Are you a busy person? Is your mobile phone flooding with voice mail? Your mail box filled with junk mail and no longer a good way for people to leave you a short message? Clip Option can offer you a solution. People can post you a short message on your screen directly while you left your computer open and went out to your work site. Unlike MSN and other text massager, Clip Option comes with an easy to install program which do not require a central server to send a data can save you headache from downtime in case of server failure.
System objective, Project Scope, differentiator

Clip option should allow a user to send a short note to another user. A received message will be posted on the screen in a beautiful, easy to read clip art format on the receiver’s screen.

Software Requirement
Cool Software Features:

· Users are able to send short messages to another user running the program. The received message will be display on a screen of the receiver in a clip form.

· Receiver has ability to set receiving options such as the maximum number of message on screen, check for repeat message, block message.

· Unlike MSN or Yahoo Messager, Clip Option does not require a center server, a person can just run the program and they are ready to go to~.
· User can move around their clip message around! Manage the desktop the way you like.
· Send and receive message even without internet connection as long as you are on the same LAN!

Possible Extension:

· Voiced Message: user can send their voice along with their message

· Recent Message Listing: Messages that a person received are saved in a text file and kept for a number of days specified by user before deleting.
Program Sketch:

See Picture At the end of the report
System and Software Architecture
There are 3 main parts to Clip Option: User Interface, the core program and communicator part. User Interface part deals with giving text box for user to type in, letting the user move the clipped message around etc. The core program deals with how to handle message received from the communicator, should the program block the message. It also deals with the saving of message logs and managing other user options. Communicator part is the part dealing with opening sockets, sending the data to the other side.

[image: image1]
Notice that the sender and receiver side are the same. Clip Option can acts as both receiver and sender at the same time.
In user interface, each clip message acts independently from one and each have a core features such as the position on the screen and the message contain in the clip, the voice within the message. Such structure is similar and thus better managed by Object Orientated Programming. A language I have in mind is C#, since it is reasonable simple to create a window application using it. Also Microsoft Visual studio has lots of useful tools in developing that and it is already preinstalled in the lab. However most people might not have high experience in C#, so it might change according to the team’s preference.
The core can save user option easily in a text file in the directory that the program is installed. We do not need a database program or anything.
The core itself can be coded by and language, its main responsibility is to communicate between the communicator and user interface, and do a simple check before doing any transfer in data. The most logical option is to use the same language as the user interface since we do not have to write a converter code. However it is relatively easy to do that in J#, if the coder needs to write it as a script.
Communicator deals with opening port when the program is opened, it also initialized the sockets when the message is about to be sent or received. I have coded some data transfer via socket code in C before, it is not that complicated, after doing some research Java and C# seems to be able to do it as well, so they all are good options. Most logical option again of course is the same as the core and user interface.
The way this will works is that when the program is opened. The computer will open a socket and wait for incoming connection. When a sender open the program, the same thing happens, but when a message is actually sent, the sender side will close a listening for an instance and make a connection to another listener. Once a connection is established, the message will be sent and the connection will then be closed on both side. Both side then open up socket for listening again.
Life Cycle Plan

This is my rough estimate of how much time it should take each part of the project.

The project would need at most 5 programmers. The work will be divided into 3 parts as suggested by the system design. User Interface, Core and Communication. User interface is the biggest part of this project and thus estimate will take the most man power. Thus the 5 programmers would be divided into sub-team in such way:

UI: 2 people

Core: 1 person

Communication: 2 people

We will be using waterfall life cycle with feedback model (sashimi) in this project, the testing would be done in 2 phases in the middle of implementation and at the end. Thus the project is divided into these stages.
1. Requirement and Specification:
1 day:
1-2 hour meeting

First meeting: Brief the team on the program and what it would be able to do. Let the team suggest extra or cut out features.

Rough Estimate of the design model and task division

2. Design

3 days:
1-2 hour meeting each

Second meeting: After each member is assigned, they have chance to go back and think about their coding. This meeting is design of the system, how should each part of the project be able to communicate one another. What function are needed, how should the data be passes. Go back to requirement if needed
3. Implementation:
Coding: 1.5 week

Each member will be coding their own part for a week, a rough prototype should be testable at this time.

Short meeting every week: Discuss progress and also revise design if necessary
Unit Testing:
2-3 hour

First testing: The very first testing with the prototype. It will be done with stub. Then each sub team with put the project together and do a prototype test

Coding II: 1 week

After the testing, the team would start working on fixing the bugs they found and finish the implementation. Assemble everything together at the end of the week
4. Verification:
3 days: A full testing. An hour meeting to decide on testing strategy, go back to fixing/ coding if necessary.

5. Maintenance:
2 days: Full report writes up, turning in the project
Total: 4 weeks and 1 day. The reason why I use this model is because we can produce some report out and hand in those reports early in the game, fitting the deadline set by the professor. The time estimate is a lot shorter than 8 weeks, but I expect a lot of cycle between verification and coding. The project will progress in a similar to evolution model, where the core code will be done first and stuffs will be added along the way between each cycle of coding and verification. Maintenance is to fix the report generated by all the steps to be up to date and ready to hand in.

Feasibility Rational
Why do I think we can pull this out:

· The project was planned for 4 weeks and 1 day. We actually have until March here (2 months) which leaves us about 3 weeks spare time.
· Personally I think with another good programmer who know about UI in windows well, this project can be completed with 2 people. It was planned for 5 to be on the safe side.

· The project concept itself is rather simple, what’s complicate is the User Interface and how to make it looks ‘good’. The project can be handed and claimed ‘complete’ even without the UI looks exactly right.
Risk
· I planed on using C#, the team will not be comfortable with this. It will take sometime to get hang on this
· Communicating through proxy can be challenging to code for some people. It would be great to have someone with experience in the team. Especially people who take networking course already
· According to the rough sketch, I have a little icon in task bar while running the program. I do not know how to code that yet, it will take sometime to learn. Ideally we can get a person who code some windows Apps in the team
· The estimate schedule for this project is done by a total novice (me), there will be some mistakes.
Removable Features:

If the time gets tight, we can removed some of the features
· Voiced message – core and UI
· Auto log message - core
· Some beauty out of UI. – UI
[image: image2.jpg]£ | /'”MZ N Indan d05l/\+op

My COmp # (,.é”;:‘

: /=

[= 1 (e oble chp Messanes
i T

| ,

g

@G\J{] l@a T

\ Iﬁcoh O‘Q "\'\Q \”@9‘0‘”‘ on ‘}0)[4 bﬁw
When minimize d

i
i
<

e oo chch gt dhe wcon i the Taboy
Nhen douible ; ajﬁou\ oan qu (o1 of @pmns here

Gl fo addes)

T ofher exteryony

Clip Mossage hat Wil be
on “\Q SO0

User Interface

Core

Communicator

Clip Option

Communicator

Core

User Interface

Clip Option

Internet/LAN

