Jeff Carlson, Linus Chou, Daniel Otero
CSE 403

Stepp

FreedBack: LCO

Operational Concepts

FreedBack is an open-source, platform-independent solution for developers seeking to add user ratings and comments to their web applications. Its main goal is to provide as many customizable features as possible in a simple environment. As such it appeals to a broad range of users, from the inexperienced blogger to the overworked professional. FreedBack would provide a database set-up, PHP-base for the front-end and database interaction, and some form of parser to insert the necessary code into specified points in user web files. These features would work together to provide a wide variety of options for any user.
System Requirements

The user would interact with the software in two main ways. The first is to specify a region in each web document where the content would appear. This would be accomplished by inserting the necessary parameters into a comment, and would remain unseen by any browsers used during the user’s web design process. The parameters passed in would allow basic control over the appearance of the content, and would be suitable for most users. Here is an example pseudo-comment:

<!--FBINSERT theme=”rateAndComment” bgColor=”white” textColor=”black”…-->

For more explicit control over appearance, layout, and content, more advanced users would be provided an API to make very powerful modification. By providing the parser with a schema-like document, the user could explicitly override the default behavior for any range of substructures. This might look something like the following pseudo-coded example:
…

<!--FBPARSE element=”commentBox”-->

<div class=”someClass”>

<ul class=”someOtherClass”>

<!--FBINSERT element=”commentTime”>

<!--FBINSERT element=”userName”>

…

</div>

As doing this would become somewhat heavy handed, it would be a further goal, pending completion of the more basic requirements, to provide users a GUI-based editor for building both the insertion comment used in their own documents and more complex templates.

System and Software Architecture

At the time of design, we hope to complete this project using PHP as our scripting language, MySQL for database functionality, and Java for any stand-alone application needed. It works as follows:
[image: image1.png]the user

) web files

Eppe?

legit PHP files

theoretical
GUI-based editor

the intarweb PHP-enabled

server

comments and rafings

the ofher user

The developer has built a website that needs rating and/or comment functionality. On each page he (or she…) has designated an area for this content to appear via an insertion comment. If he seeks a greater level of control, he will have built a template/schema, possibly with the help of a provided GUI editor. This will be fed to a Java program that will parse all files within a specified directory structure and output a set of well-formed PHP documents. These can be uploaded to a PHP-enabled server of choice, along with the PHP scripts that make up the backbone of FreedBack’s server-side component. PHP will then query the database for the necessary information, build it into the webpage in question, and spit it out to an internet visitor. Similarly, when a visitor to the site submits a rating or comment, the information is passed into the database. It’s then posted to subsequent visitors.
Lifecycle Plan

Our project will require several steps. First, and most important, is learning the technology involved. This can be combined with design and development of the basic foundation. After developing the foundation classes, we would go on to add as many features as time allowed. As such, our development schedule will more or less resemble a cross between the spiral model and staged delivery. We will start with a very basic parser, one template for use, and the most basic form of PHP/MySQL interaction possible. The next step will be to implement a more powerful user template language and the parsing/editing program that would be required alongside it. Finally, we’d like to build a GUI-based editor for users that don’t necessarily want to memorize 400 tags that we’ve come up with. If time remained, we’d work on robustness, feature set, methods of simplification, and perhaps widening the variety of available preset “themes.” With any luck we can get through the first stage in three weeks, the second in another three weeks, and the editor in two weeks. This is a conservative estimate, and hopefully we will be able to exceed these initial expectations.

Five workers should be enough to meet the goals stated in the required time. Expertise in web-based technologies and databases, parsing and compilers, and GUI development in Java would be desirable characteristics in a potential developer. Chances are two people would spend their time working the web portion of the project (PHP/MySQL interfacing), and the remaining members would focus on the parser, the API definition and design, and the optional GUI.

Feasibility Rationale

The basic concepts fueling this project are fairly simple to implement. What will complicate things most is the likelihood that people working on the project will have to learn a great deal outside of their areas of expertise. If anything were to make this project fail to meet its deadline, it would probably be an overestimate of the ease of learning and developing with new technologies. The assumption that this can be done is already a dangerous one. It seems like a good, simple idea, but the fact that there are no obvious examples of anyone else implementing anything like it is suspicious. Another unfortunate risk lies in our lack of understanding of the required technology. As we learn more about the elements involved, it could well turn out that what we seek to do is far more complicated than we’d anticipated.

Time is our biggest concern. For this reason we will attack features in a priority-driven order, cutting less-essential features that fall outside of our deadline.
