
7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 1

Intro to Operating Systems

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 2

Readings and References

• Reading 
» Operating System Concepts, Silberschatz, Galvin, 

and Gagne
• Chapter 1 Introduction

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 3

What is an Operating System?

• Makes using the computer convenient
» does a lot of the dirty work for you
» hides details about the system behind a clean 

interface
• Makes using the computer efficient

» expertly manages and allocates resources
• These goals are often contradictory

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 4

Views of the OS

• The OS is a context
» An environment for user applications to run in
» Provides the services that applications need
» All programs on the system use this context

• The OS is a controller
» Controls the I/O devices and user programs
» Prevents and handles errors



7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 5

Views of the OS (continued)

• The OS is a resource allocator
» A system has many resources: CPU time, memory, 

disk space, access to I/O devices
» The OS allocates these resources
» Policies are generally configurable

• allocate evenly among all uses, or
• give more to those who pay more, or
• prefer to give it to uses with high priority, or ...

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 6

What makes up the OS?

• “Just the kernel”
» the program that starts running at boot time, 

manages all user programs, and runs until 
shutdown

• or “All the code you didn’t write”
» all system libraries, compilers, assemblers
» all the software shipped with the machine

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 7

OS issues for the user

• how are resources shared among users? 
• what level of performance is available? 
• how are failures prevented and dealt with?
• how are resources named and assigned?
• how is the flow of information restricted?
• how do we control and charge for resource 

usage?

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 8

OS issues for the sysadmin

• how are programs protected from others?
• how are new features added?
• what happens as resource needs increase?
• are new versions always compatible with old?
• can the components of the system be 

geographically separated?



7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 9

OS issues for the programmer

• how can the data for a program persist?
» from one execution to the next
» from one generation to the next

• how is information exchanged?
» between systems, applications, users, ...

• how are parallel activities controlled?
• how is the OS organized? 

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 10

In Olden Times...

• The first operating systems were known as 
batch systems
» OS was loaded once into a portion of memory
» Programs stored on punch cards or paper tape
» One by one, programs were loaded and run
» Each program came with control cards telling the 

OS what to do

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 11

Multiprogramming

» Increase utilization of the processor

• Enabling technology
» decrease in memory prices

• Keep multiple jobs loaded in memory
• While one program waits for I/O, run another 

one for a while

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 12

Timesharing

» Allow multiple users/programs to share a 
single system concurrently

• Based on time-slicing (1960s)
» divide the CPU equally among the users

• For the first time, users could view, edit, and 
debug programs “on-line”

• Multics was first large timesharing system



7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 13

Minicomputers

» Enable “small scale” applications

• Low cost hardware could run sophisticated 
applications (1970s)
» didn’t need all the overhead of large mainframe 

system installations
» small businesses, science and engineering
» still focussed on efficient multi-user services

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 14

Microcomputers

» Enable “small scale” applications

• Low cost hardware could run sophisticated 
applications (1980s)
» didn’t need all the overhead of minicomputer 

systems
» very small businesses, scientists and engineers
» very focussed on the individual user

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 15

Networked Workstations

» Enable enterprise and web applications

• Individual workstation is only part of the 
system

• Connectivity and security very important
• Rebirth of sophisticated operating systems for 

the end user

Windows XP / Mac OSX / Linux are “real” operating systems

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 16

Real-Time Operating Systems

• Specialized operations: subway systems, flight control, 
factories, nuclear power plants, ...

• RTOS must guarantee response to physical events in a fixed 
time interval
» Problem is to schedule all activities in order to meet all of the critical 

requirements
» Solution is over-capacity and careful design

• ARINC 653 
» “defines an application executive for space and time partitioning that 

may be used wherever multiple applications need to share a single 
processor and memory, in order to guarantee that one application
cannot bring down another in the event of application failure.” 



7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 17

Tightly-coupled Systems

• Support parallel applications wishing to get 
speedup of computationally complex tasks

• Needs basic primitives for dividing one task 
into multiple parallel activities

• Supports efficient communication between 
those activities

• Supports synchronization of activities to 
coordinate sharing of information

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 18

Loosely-coupled Systems

• Sharing of distributed resources, hardware, and 
software to improve utilization and 
performance
» speedup through parallelism
» improved reliability

• Supports communication between parts of a 
job or different jobs

• Incorporate commodity processors

7-May-2006 cse410-18-os © 2006 Douglas Johnson and University of Washington 19

Some loosely coupled systems
• SETI@Home

» using Internet connected machines to analyze 
astronomical data

• Folding@Home
» using Internet connected machines to study protein 

folding, misfolding, aggregation, and related diseases.
• Beowulf

» connected computers form a parallel processing 
supercomputer


