
12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 1

Threads

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 2

Reading and References

• Reading
» Chapter 5, Operating System Concepts, Silberschatz, Galvin,

and Gagne

• Other References
» Inside Microsoft Windows 2000, Third Edition, Solomon and

Russinovich
» Pthreads Programming, Nichols, Buttlar and Farrell

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 3

A Process

• A complete process includes numerous things
» address space (all the code and data pages)
» OS resources and accounting information
» a “thread of control”, which defines where the

process is currently executing
• the Program Counter
• CPU registers

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 4

Processes are heavyweight objects

• Creating a new process is costly
» lots of data must be allocated and initialized
» operating system control data structures
» memory allocation for the process

• Communicating between processes is costly
» most communication goes through the OS
» need a context switch for each process

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 5

Parallelism

• Why build a parallel program?
» responsiveness to user
» web server handling simultaneous web requests
» execute faster on a multiprocessor

• One approach using heavyweight processes
» create several processes to execute in parallel
» map each process to same address space
» specify starting address and initial parameters

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 6

Parallelism

• With multiple paths of execution, we can
implement (or simulate) simultaneous actions

• Why build a parallel program?
» responsiveness to user

• user interface always responds quickly

» web server handling simultaneous web requests
• each request is handled independently

» execute faster on a multiprocessor
• two CPUs can run two programs at once

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 7

Parallel processes are expensive

• There’s a lot of performance cost
» creating these processes
» coordinating them through the OS

• There’s a lot of duplication
» same program code, protection, etc…

• It may be time for a little refinement and
complexity ...

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 8

Process definition
• What is fundamental in a process?

» Code and data
» Access and control privileges
» Operating system management

• scheduling, memory map, ...

• What else is there?
» Program Counter, registers, and stack

• Separate the idea of “process” from the idea of
a “thread of control” (PC, SP, registers)

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 9

Threads are “Lightweight Processes”

• Most operating systems now support two
entities
» the process, which defines the address space and

general process attributes
» the thread, which defines one or more execution

paths within a process
• Threads are the unit of scheduling
• Processes are the “containers” in which

threads execute
12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 10

Multi-threaded design benefits

• Separating execution path from address space
simplifies design of parallel applications

• Some benefits of threaded designs
» improved responsiveness to user actions
» handling concurrent events (e.g., web requests)
» simplified program structure (code, data)
» more efficient and so less impact on system
» map easily to multi-processor systems

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 11

One thread Three threads

stack

heap

code

stack 1

heap

code

stack 2

stack 3

$sp

PC

$sp1

$sp2

$sp3

PC1

PC2

PC3

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 12

Cookbook Analogy

• Think of a busy kitchen
» 3 cooks and 1 cookbook

• Each cook maintains a pointer to where they
are in the cookbook (the Program Counter)

• Two cooks could both be making the same
thing (threads running the same procedure)

• The cooks must coordinate access to the
kitchen appliances (resource access control)

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 13

Implementation

• A thread is bound to the process that provides
its address space

• Each process has one or more threads
• How are threads actually implemented?

» Kernel threads
• In the kernel (OS) and user mode libraries combined

» User threads
• In user mode libraries alone

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 14

Kernel Threads

• The operating system knows about and
manages the threads in every program

• Thread operations (create, yield, ...) all require
kernel involvement

• Major benefit is that threads in a process are
scheduled independently
» one blocked thread does not block the others
» threads in a process can run on different CPUs

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 15

Kernel Thread Performance

• Kernel threads have performance issues
• Even though threads avoid process overhead,

operations on kernel threads are still slow
» a thread operation requires a kernel call
» kernel threads may be overly general, in order to

support needs of different users, languages, etc.
» the kernel can’t trust the user, so there must be lots

of checking on kernel calls

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 16

User Threads

• To make thread operations faster, they can be
implemented at the user level
» Each thread is managed by the run-time system
» user-mode libraries are linked with your program

• Each thread is represented simply by a PC,
registers, stack and a control block, managed
in the user’s address space

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 17

User Thread Performance

• All activities happen in user address space so
thread operations can be faster

• But OS scheduling takes place at process level
» block entire process if a single thread is I/O blocked
» may run a process that is just running an idle thread

• Win2K provides “fibers” as user mode threads
» application can schedule its own “lightweight

threads” in user mode code

12-May-2006 cse410-20-threads © 2006 DW Johnson and University of Washington 18

Simplified Thread Interface

• t = thread_create(), thread_start(t)
» create a new thread of control and start it

• thread_yield()
» voluntarily give up the processor for awhile

• thread_exit()
» terminate the calling thread

