
University of Washington

Computer Systems
CSE 410 Spring 2012
11– Processes and Exceptions

11 May 2012 1 Exceptional Control and Processes

University of Washington

Processes and control flow

 Are branches/calls the only way we can get the processor to
“go somewhere” in a program?

 What is a program? A processor? A process?

2 11 May 2012 Exceptional Control and Processes

University of Washington

Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

 Processors do only one thing:
 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

time

3 11 May 2012 Exceptional Control and Processes

University of Washington

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:
 Jumps and branches

 Call and return

Both react to changes in program state

 Insufficient for a useful system:
difficult to react to changes in system state
 user hits “Ctrl-C” at the keyboard

 user clicks on a different application’s window on the screen

 data arrives from a disk or a network adapter

 instruction divides by zero

 system timer expires

 How do we deal with the above? Are branches/calls sufficient?

4 11 May 2012 Exceptional Control and Processes

University of Washington

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:
 Jumps and branches

 Call and return

Both react to changes in program state

 Insufficient for a useful system:
difficult to react to changes in system state
 user hits “Ctrl-C” at the keyboard

 user clicks on a different application’s window on the screen

 data arrives from a disk or a network adapter

 instruction divides by zero

 system timer expires

 System needs mechanisms for “exceptional control flow”!

5 11 May 2012 Exceptional Control and Processes

University of Washington

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
 Exceptions

 change in control flow in response to a system event
(i.e., change in system state, user-generated interrupt)

 Combination of hardware and OS software

 Higher level mechanisms
 Process context switch

 Signals - nonlocal jumps for exceptional conditions

 Implemented by either:

 OS software (context switch and signals)

 C language runtime library (nonlocal jumps)

6 11 May 2012 Exceptional Control and Processes

University of Washington

Exceptions

 An exception is transfer of control to the operating system (OS)
in response to some event (i.e., change in processor state)

 Examples:
div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

 How does the system know where to jump to?

User Process OS

exception
exception processing
by exception
handler

• return to I_current
• return to I_next
•abort

event I_current
I_next

7 11 May 2012 Exceptional Control and Processes

University of Washington

0
1

2
...

n-1

Interrupt Vectors

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

8 11 May 2012 Exceptional Control and Processes

University of Washington

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin(s)

 Handler returns to “next” instruction

 Examples:
 I/O interrupts

 hitting Ctrl-C at the keyboard

 clicking a mouse button or tapping a touch screen

 arrival of a packet from a network

 arrival of data from a disk

 Hard reset interrupt

 hitting the reset button on front panel

 Soft reset interrupt

 hitting Ctrl-Alt-Delete on a PC

9 11 May 2012 Exceptional Control and Processes

University of Washington

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
 Traps

 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable

 Examples: page faults (recoverable), segment protection faults
(unrecoverable), floating point exceptions

 Either re-executes faulting (“current”) instruction or aborts

 Aborts

 Unintentional and unrecoverable

 Examples: parity error, machine check

 Aborts current program
10 11 May 2012 Exceptional Control and Processes

University of Washington

Trap Example: Opening File
 User calls: open(filename, options)

 Function open executes system call instruction int

 OS must find or create file, get it ready for reading or writing

 Returns integer file descriptor

0804d070 <__libc_open>:

 . . .

 804d082: cd 80 int $0x80

 804d084: 5b pop %ebx

 . . .

User Process OS

exception

open file

returns

int
pop

11 11 May 2012 Exceptional Control and Processes

University of Washington

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

 Page handler must load page into physical memory

 Returns to faulting instruction

 Successful on second try

int a[1000];

main ()

{

 a[500] = 13;

}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process OS

exception: page fault

Create page and
load into memory returns

movl

12 11 May 2012 Exceptional Control and Processes

University of Washington

Fault Example: Invalid Memory Reference

 Page handler detects invalid address

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

 a[5000] = 13;

}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address

movl

signal process

13 11 May 2012 Exceptional Control and Processes

University of Washington

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap

128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

http://download.intel.com/design/processor/manuals/253665.pdf

14 11 May 2012 Exceptional Control and Processes

http://download.intel.com/design/processor/manuals/253665.pdf

University of Washington

Processes

 Definition: A process is an instance of a running program
 One of the most important ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU

 Private virtual address space

 Each program seems to have exclusive use of main memory

 Why are these illusions important?

 How are these illusions maintained?

15 11 May 2012 Exceptional Control and Processes

University of Washington

Processes

 Definition: A process is an instance of a running program
 One of the most important ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU

 Private virtual address space

 Each program seems to have exclusive use of main memory

 How are these Illusions maintained?
 Process executions interleaved (multi-tasking)

 Address spaces managed by virtual memory system – next course topic

16 11 May 2012 Exceptional Control and Processes

University of Washington

Concurrent Processes

 Two processes run concurrently (are concurrent) if their
instruction executions (flows) overlap in time

 Otherwise, they are sequential

 Examples:
 Concurrent: A & B, A & C

 Sequential: B & C

Process A Process B Process C

time

17 11 May 2012 Exceptional Control and Processes

University of Washington

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time

 However, we can think of concurrent processes as
executing in parallel (only an illusion?)

time

Process A Process B Process C

18 11 May 2012 Exceptional Control and Processes

University of Washington

Context Switching

 Processes are managed by a shared chunk of OS code
called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of a user process

 Control flow passes from one process to another via a
context switch… (how?)

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

19 11 May 2012 Exceptional Control and Processes

University of Washington

fork: Creating New Processes

 int fork(void)

 creates a new process (child process) that is identical
to the calling process (parent process)

 returns 0 to the child process

 returns child’s process ID (pid) to the parent process

 Fork is interesting (and often confusing) because
it is called once but returns twice

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

20 11 May 2012 Exceptional Control and Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process n

21 11 May 2012 Exceptional Control and Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process n

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Child Process m

22 11 May 2012 Exceptional Control and Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process n

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Child Process m

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = m

23 11 May 2012 Exceptional Control and Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process n

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Child Process m

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = m

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = 0

24 11 May 2012 Exceptional Control and Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process n

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Child Process m

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = m

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = 0

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

hello from parent hello from child Which one is first?
25 11 May 2012 Exceptional Control and Processes

University of Washington

Fork Example #1

void fork1()

{

 int x = 1;

 pid_t pid = fork();

 if (pid == 0) {

 printf("Child has x = %d\n", ++x);

 } else {

 printf("Parent has x = %d\n", --x);

 }

 printf("Bye from process %d with x = %d\n", getpid(), x);

}

 Parent and child both run same code
 Distinguish parent from child by return value from fork

 Start with same state, but each has private copy
 Including shared output file descriptor

 Relative ordering of their print statements undefined

26 11 May 2012 Exceptional Control and Processes

University of Washington

Fork Example #2

void fork2()

{

 printf("L0\n");

 fork();

 printf("L1\n");

 fork();

 printf("Bye\n");

}

 Both parent and child can continue forking

L0 L1

L1

Bye

Bye

Bye

Bye

27 11 May 2012 Exceptional Control and Processes

University of Washington

Fork Example #3

 Both parent and child can continue forking

void fork3()

{

 printf("L0\n");

 fork();

 printf("L1\n");

 fork();

 printf("L2\n");

 fork();

 printf("Bye\n");

} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

28 11 May 2012 Exceptional Control and Processes

University of Washington

Fork Example #4

 Both parent and child can continue forking

void fork4()

{

 printf("L0\n");

 if (fork() != 0) {

 printf("L1\n");

 if (fork() != 0) {

 printf("L2\n");

 fork();

 }

 }

 printf("Bye\n");

}

L0 L1

Bye

L2

Bye

Bye

Bye

29 11 May 2012 Exceptional Control and Processes

University of Washington

Fork Example #4

 Both parent and child can continue forking

void fork5()

{

 printf("L0\n");

 if (fork() == 0) {

 printf("L1\n");

 if (fork() == 0) {

 printf("L2\n");

 fork();

 }

 }

 printf("Bye\n");

}

L0 Bye

L1

Bye

Bye

Bye

L2

30 11 May 2012 Exceptional Control and Processes

University of Washington

exit: Ending a process

 void exit(int status)

 exits a process

 Normally return with status 0

 atexit() registers functions to be executed upon exit

void cleanup(void) {

 printf("cleaning up\n");

}

void fork6() {

 atexit(cleanup);

 fork();

 exit(0);

}

31 11 May 2012 Exceptional Control and Processes

University of Washington

Zombies
 Idea

 When process terminates, still consumes system resources

 Various tables maintained by OS

 Called a “zombie”

 That is, a living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (horror movie!)

 Parent is given exit status information

 Kernel discards process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then child will be

reaped by init process

 So, only need explicit reaping in long-running processes

 e.g., shells and servers

32 11 May 2012 Exceptional Control and Processes

University of Washington

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6639 ttyp9 00:00:03 forks

 6640 ttyp9 00:00:00 forks <defunct>

 6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6642 ttyp9 00:00:00 ps

Zombie
Example

 ps shows child process as
“defunct”

 Killing parent allows child to be
reaped by init

void fork7()

{

 if (fork() == 0) {

 /* Child */

 printf("Terminating Child, PID = %d\n",

 getpid());

 exit(0);

 } else {

 printf("Running Parent, PID = %d\n",

 getpid());

 while (1)

 ; /* Infinite loop */

 }

}

33 11 May 2012 Exceptional Control and Processes

University of Washington

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6676 ttyp9 00:00:06 forks

 6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6678 ttyp9 00:00:00 ps

Non-terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill explicitly, or else will keep
running indefinitely

void fork8()

{

 if (fork() == 0) {

 /* Child */

 printf("Running Child, PID = %d\n",

 getpid());

 while (1)

 ; /* Infinite loop */

 } else {

 printf("Terminating Parent, PID = %d\n",

 getpid());

 exit(0);

 }

}

34 11 May 2012 Exceptional Control and Processes

University of Washington

Synchronization!

35 11 May 2012 Exceptional Control and Processes

University of Washington

wait: Synchronizing with Children

 int wait(int *child_status)

 suspends current process until one of its children terminates

 return value is the pid of the child process that terminated

 if child_status != NULL, then the object it points to will be set
to a status indicating why the child process terminated

36 11 May 2012 Exceptional Control and Processes

University of Washington

wait: Synchronizing with Children

void fork9() {

 int child_status;

 if (fork() == 0) {

 printf("HC: hello from child\n");

 }

 else {

 printf("HP: hello from parent\n");

 wait(&child_status);

 printf("CT: child has terminated\n");

 }

 printf("Bye\n");

 exit();

}

HP

HC Bye

CT Bye

37 11 May 2012 Exceptional Control and Processes

University of Washington

wait() Example
 If multiple children completed, will take in arbitrary order

 Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork10()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

38 11 May 2012 Exceptional Control and Processes

University of Washington

waitpid(): Waiting for a Specific Process

 waitpid(pid, &status, options)

 suspends current process until specific process terminates

 various options (that we won’t talk about)

void fork11()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {

 pid_t wpid = waitpid(pid[i], &child_status, 0);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

39 11 May 2012 Exceptional Control and Processes

University of Washington

execve: Loading and Running Programs

 int execve(

 char *filename,

 char *argv[],

 char *envp

)

 Loads and runs
 Executable filename

 With argument list argv

 And environment variable list envp

 Does not return (unless error)

 Overwrites process, keeps pid

 Environment variables:
 “name=value” strings

Null-terminated
environment
variable strings

unused

Null-terminated
commandline
arg strings

envp[n] = NULL

envp[n-1]

envp[0]

…

Linker vars

argv[argc] = NULL

argv[argc-1]

argv[0]

…

envp

argc

argv

Stack
0xbfffffff

40 11 May 2012 Exceptional Control and Processes

University of Washington

execve: Example

envp[n] = NULL

envp[n-1]

envp[0]

…

argv[argc] = NULL

argv[argc-1]

argv[0]

…

“ls”

“-l”

“/usr/include”

“USER=gaetano”

“PRINTER=ps581”

“PWD=/homes/iws/gaetano”

41 11 May 2012 Exceptional Control and Processes

University of Washington

Summary

 Exceptions
 Events that require non-standard control flow

 Generated externally (interrupts) or internally (traps and faults)

 Processes
 At any given time, system has multiple active processes

 Only one can execute at a time, however,

 Each process appears to have total control of
the processor + has a private memory space

42 11 May 2012 Exceptional Control and Processes

University of Washington

Summary (cont’d)

 Spawning processes
 Call to fork

 One call, two returns

 Process completion
 Call exit

 One call, no return

 Reaping and waiting for Processes
 Call wait or waitpid

 Loading and running Programs
 Call execl (or variant)

 One call, (normally) no return

43 11 May 2012 Exceptional Control and Processes

