
University of Washington

Computer Systems
CSE 410 Spring 2012
12 – Virtual Memory

16 May 2012 1 Virtual Memory

University of Washington

Virtual Memory (VM)

 Overview and motivation

 VM as tool for caching

 VM as tool for memory management

 VM as tool for memory protection

 Address translation

2 16 May 2012 Virtual Memory

University of Washington

Processes

 Definition: A process is an instance of a running program
 One of the most important ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU

 Private virtual address space

 Each program seems to have exclusive use of main memory

 How are these Illusions maintained?
 Process executions interleaved (multi-tasking)

 Address spaces managed by virtual memory system  TODAY!

3 16 May 2012 Virtual Memory

University of Washington

Virtual Memory (Previous Lectures)

 Programs refer to virtual memory addresses

 movl (%ecx),%eax

 Conceptually very large array of bytes

 Each byte has its own address

 Actually implemented with hierarchy of different memory types

 System provides address space private to particular “process”

 Allocation: Compiler and run-time system
 Where different program objects should be stored

 All allocation within single virtual address space

 But why virtual memory?

 Why not physical memory?

4

00∙∙∙∙∙∙0

FF∙∙∙∙∙∙F

16 May 2012 Virtual Memory

University of Washington

Problem 1: How Does Everything Fit?

5

64-bit addresses:
16 Exabyte

Physical main memory:
Few Gigabytes

?

And there are many processes ….
16 May 2012 Virtual Memory

University of Washington

Problem 2: Memory Management

6

Physical main memory

What goes

where?

stack
heap
.text

.data

…

Process 1
Process 2
Process 3
…
Process n

x

16 May 2012 Virtual Memory

University of Washington

Problem 3: How To Protect

7

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

16 May 2012 Virtual Memory

University of Washington

How would you solve those problems?

8 16 May 2012 Virtual Memory

University of Washington

Indirection

 “Any problem in CS can be solved by adding
a level of indirection” - Butler Lampson (now at MSR)

 Without Indirection

 With Indirection

Name
Thing

Name
Thing

Thing

16 May 2012 Virtual Memory 9

University of Washington

Indirection

 Indirection: Indirection is the ability to reference something using a name,
reference, or container instead the value itself. A flexible mapping
between a name and a thing allows changing the thing without notifying
holders of the name.

 Without Indirection

 With Indirection

 Examples:
Pointers, Domain Name Service (DNS) name->IP address, phone system
(e.g., cell phone number portability), snail mail (e.g., mail forwarding),
911 (routed to local office), DHCP, call centers that route calls to available
operators, etc.

Name
Thing

Name
Thing

Thing

16 May 2012 Virtual Memory 10

University of Washington

Solution: Level Of Indirection

16 May 2012 11 Virtual Memory

 Each process gets its own private memory space

 Solves the previous problems

Physical memory

Virtual memory

Virtual memory

Process 1

Process n

mapping

University of Washington

Address Spaces

 Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

 Physical address space: Set of M = 2m physical addresses (n >> m)
 {0, 1, 2, 3, …, M-1}

 Every byte in main memory:
one physical address, one (or more) virtual addresses

12 16 May 2012 Virtual Memory

University of Washington

Mapping

16 May 2012 13 Virtual Memory

V
ir

tu
a
l
A

d
d
re

ss

Physical

Memory

Disk

A virtual address can be

mapped to either

physical memory or disk.

University of Washington

A System Using Physical Addressing

16 May 2012 14 Virtual Memory

 Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

University of Washington

A System Using Virtual Addressing

16 May 2012 15 Virtual Memory

 Used in all modern desktops, laptops, workstations

 One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

University of Washington

Why Virtual Memory (VM)?

 Efficient use of limited main memory (RAM)
 Use RAM as a cache for the parts of a virtual address space

 some non-cached parts stored on disk

 some (unallocated) non-cached parts stored nowhere

 Keep only active areas of virtual address space in memory

 transfer data back and forth as needed

 Simplifies memory management for programmers
 Each process gets the same full, private linear address space

 Isolates address spaces
 One process can’t interfere with another’s memory

 because they operate in different address spaces

 User process cannot access privileged information

 different sections of address spaces have different permissions

16 May 2012 16 Virtual Memory

University of Washington

VM as Caching

 Virtual memory: array of N = 2n contiguous bytes

 think of the array (allocated part) as being stored on disk

 Physical main memory (DRAM) = cache for allocated virtual memory

 Blocks are called pages; size = 2p

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

2n-1

2m-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

Disk

17 16 May 2012 Virtual Memory

University of Washington

Memory Hierarchy: Core 2 Duo

16 May 2012 18 Virtual Memory

Disk

Main
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput:

Latency: 100 cycles 14 cycles 3 cycles millions

~4 MB

32 KB

~4 GB ~500 GB

Not drawn to scale

L1/L2 cache: 64 B blocks

Miss penalty (latency): 30x

Miss penalty (latency): 10,000x

University of Washington

DRAM Cache Organization

 DRAM cache organization driven by the enormous miss penalty
 DRAM is about 10x slower than SRAM

 Disk is about 10,000x slower than DRAM

 For first byte, faster for next byte

 Consequences?
 Locality?

 Block size?

 Associativity?

 Write-through or write-back?

16 May 2012 19 Virtual Memory

University of Washington

DRAM Cache Organization

 DRAM cache organization driven by the enormous miss penalty
 DRAM is about 10x slower than SRAM

 Disk is about 10,000x slower than DRAM

 For first byte, faster for next byte

 Consequences
 Large page (block) size: typically 4-8 KB, sometimes 4 MB

 Fully associative

 Any VP can be placed in any PP

 Requires a “large” mapping function – different from CPU caches

 Highly sophisticated, expensive replacement algorithms

 Too complicated and open-ended to be implemented in hardware

 Write-back rather than write-through

16 May 2012 20 Virtual Memory

University of Washington

A System Using Virtual Addressing

16 May 2012 21 Virtual Memory

How would you do the VA -> PA translation?

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

University of Washington

Address Translation: Page Tables

 A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages. Here: 8 VPs

16 May 2012 22 Virtual Memory

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory (disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

How many page tables in the system?

University of Washington

Address Translation With a Page Table

16 May 2012 23 Virtual Memory

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

University of Washington

Page Hit

 Page hit: reference to VM word is in physical memory

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

24 16 May 2012 Virtual Memory

University of Washington

Page Miss

 Page miss: reference to VM word is NOT in physical memory

25 16 May 2012 Virtual Memory

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

University of Washington

Then what?

16 May 2012 26 Virtual Memory

University of Washington

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

 Page handler must load page into physical memory

 Returns to faulting instruction

 Successful on second try

int a[1000];

main ()

{

 a[500] = 13;

}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process OS

exception: page fault

Create page and
load into memory returns

movl

27 16 May 2012 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

28 16 May 2012 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

29 16 May 2012 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

30 16 May 2012 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

31 16 May 2012 Virtual Memory

University of Washington

Why does it work?

16 May 2012 32 Virtual Memory

University of Washington

Why does it work? Locality

 Same reason as cache$!
 Virtual memory works because of locality

 At any point in time, programs tend to access a set of active
virtual pages called the working set
 Programs with better temporal locality will have smaller working sets

 If (working set size < main memory size)
 Good performance for one process after compulsory misses

 If (SUM(working set sizes) > main memory size)
 Thrashing: Performance meltdown where pages are swapped (copied)

in and out continuously

16 May 2012 33 Virtual Memory

University of Washington

VM as a Tool for Memory Management
 Key idea: each process has its own virtual address space

 It can view memory as a simple linear array

 Mapping function scatters addresses through physical memory

 Well chosen mappings simplify memory allocation and management

16 May 2012 34 Virtual Memory

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

University of Washington

VM as a Tool for Memory Management
 Memory allocation

 Each virtual page can be mapped to any physical page

 A virtual page can be stored in different physical pages at different times

 Sharing code and data among processes
 Map virtual pages to the same physical page (here: PP 6)

16 May 2012 35 Virtual Memory

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

University of Washington

Virtual Memory

Simplifying Linking and Loading

 Linking
 Each program has similar virtual

address space

 Code, stack, and shared libraries
always start at the same address

 Loading
 execve() allocates virtual pages

for .text and .data sections
= creates PTEs marked as invalid

 The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

36 16 May 2012

University of Washington

VM as a Tool for Memory Protection
 Extend PTEs with permission bits

 Page fault handler checks these before remapping
 If violated, send process SIGSEGV signal (segmentation fault)

16 May 2012 37 Virtual Memory

Process i: Address READ WRITE

PP 6 Yes No

PP 4 Yes Yes

PP 2 Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

Address READ WRITE

PP 9 Yes No

PP 6 Yes Yes

PP 11 Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

University of Washington

Address Translation: Page Hit

16 May 2012 38 Virtual Memory

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
Memory PA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

University of Washington

Address Translation: Page Fault

16 May 2012 39 Virtual Memory

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

University of Washington

Hmm… Translation sounds slow!

 What can we do?

40 16 May 2012 Virtual Memory

University of Washington

Speeding up Translation with a TLB

 Page table entries (PTEs) are cached in L1 like any other
memory word

 PTEs may be evicted by other data references

 PTE hit still requires a 1-cycle delay

 Solution: Translation Lookaside Buffer (TLB)
 Small hardware cache in MMU

 Maps virtual page numbers to physical page numbers

 Contains complete page table entries for small number of pages

16 May 2012 41 Virtual Memory

University of Washington

TLB Hit

16 May 2012 42 Virtual Memory

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

University of Washington

TLB Miss

16 May 2012 43 Virtual Memory

MMU
Cache/
Memory PA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an add’l memory access (the PTE)
Fortunately, TLB misses are rare

University of Washington

Simple Memory System Example
 Addressing

 14-bit virtual addresses

 12-bit physical address

 Page size = 64 bytes

16 May 2012 44 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPO PPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

University of Washington

Simple Memory System Page Table

 Only showing first 16 entries (out of 256)

16 May 2012 45 Virtual Memory

1 0D 0F

1 11 0E

1 2D 0D

0 – 0C

0 – 0B

1 09 0A

1 17 09

1 13 08

Valid PPN VPN

0 – 07

0 – 06

1 16 05

0 – 04

1 02 03

1 33 02

0 – 01

1 28 00

Valid PPN VPN

University of Washington

Simple Memory System TLB
 16 entries

 4-way associative

16 May 2012 46 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

University of Washington

Simple Memory System Cache
 16 lines, 4-byte block size

 Physically addressed

 Direct mapped

16 May 2012 47 Virtual Memory

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

03 DF C2 11 1 16 7

– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4

– – – – 0 36 3

08 04 02 00 1 1B 2

– – – – 0 15 1

11 23 11 99 1 19 0

B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F

D3 1B 77 83 1 13 E

15 34 96 04 1 16 D

– – – – 0 12 C

– – – – 0 0B B

3B DA 15 93 1 2D A

– – – – 0 2D 9

89 51 00 3A 1 24 8

B3 B2 B1 B0 Valid Tag Idx

University of Washington

Current state of caches/tables

03 DF C2 11 1 16 7

– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4

– – – – 0 36 3

08 04 02 00 1 1B 2

– – – – 0 15 1

11 23 11 99 1 19 0

B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F

D3 1B 77 83 1 13 E

15 34 96 04 1 16 D

– – – – 0 12 C

– – – – 0 0B B

3B DA 15 93 1 2D A

– – – – 0 2D 9

89 51 00 3A 1 24 8

B3 B2 B1 B0 Valid Tag Idx

Cache

1 0D 0F

1 11 0E

1 2D 0D

0 – 0C

0 – 0B

1 09 0A

1 17 09

1 13 08

Valid PPN VPN

0 – 07

0 – 06

1 16 05

0 – 04

1 02 03

1 33 02

0 – 01

1 28 00

Valid PPN VPN

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

TLB

Page table

48 16 May 2012 Virtual Memory

University of Washington

Address Translation Example #1

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

16 May 2012 49 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 1 0 1 0 1 1 1 1 0 0 0 0

0x0F 3 0x03 Y N 0x0D

0 0 0 1 0 1 0 1 1 0 1 0

0 0x5 0x0D Y 0x36

University of Washington

Address Translation Example #2

Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

16 May 2012 50 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

1 1 1 1 0 0 0 1 1 1 0 1 0 0

0x2E 2 0x0B N Y TBD

University of Washington

Address Translation Example #3

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

16 May 2012 51 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0x00 0 0x00 N N 0x28

0 0 0 0 0 0 0 0 0 1 1 1

0 0x8 0x28 N Mem

University of Washington

Disk

Servicing a Page Fault

 (1) Processor signals disk controller
 Read block of length P

starting at disk address X

 Store starting at memory address Y

 (2) Read occurs
 Direct Memory Access (DMA)

 Under control of I/O controller

 (3) Controller signals completion
 Interrupts processor

 OS resumes suspended process

16 May 2012 52 Virtual Memory

Disk

Memory-I/O bus

Processor

Cache

Memory

I/O
controller

Reg

(2) Direct
Memory
Address
Transfer

(1) Initiate Block Read

(3) Read
Done

University of Washington

Summary

 Programmer’s view of virtual memory
 Each process has its own private linear address space

 Cannot be corrupted by other processes

 System view of virtual memory
 Uses memory efficiently by caching virtual memory pages

 Efficient only because of locality

 Simplifies memory management and programming

 Simplifies protection by providing a convenient interpositioning point
to check permissions

16 May 2012 53 Virtual Memory

University of Washington

Memory System Summary

 L1/L2 Memory Cache
 Purely a speed-up technique

 Behavior invisible to application programmer and (mostly) OS

 Implemented totally in hardware

 Virtual Memory
 Supports many OS-related functions

 Process creation, task switching, protection

 Software

 Allocates/shares physical memory among processes

 Maintains high-level tables tracking memory type, source, sharing

 Handles exceptions, fills in hardware-defined mapping tables

 Hardware

 Translates virtual addresses via mapping tables, enforcing permissions

 Accelerates mapping via translation cache (TLB)
16 May 2012 54 Virtual Memory

