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Virtual Memory (VM) 

 Overview and motivation 

 VM as tool for caching 

 VM as tool for memory management 

 VM as tool for memory protection 

 Address translation 
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Processes 

 Definition: A process is an instance of a running program 
 One of the most important ideas in computer science 

 Not the same as “program” or “processor” 

 

 Process provides each program with two key abstractions: 
 Logical control flow 

 Each program seems to have exclusive use of the CPU 

 Private virtual address space 

 Each program seems to have exclusive use of main memory 

 

 How are these Illusions maintained? 
 Process executions interleaved (multi-tasking) 

 Address spaces managed by virtual memory system   TODAY!  
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Virtual Memory (Previous Lectures) 

 Programs refer to virtual memory addresses 

 movl (%ecx),%eax 

 Conceptually very large array of bytes 

 Each byte has its own address 

 Actually implemented with hierarchy of different memory types 

 System provides address space private to particular “process” 

 Allocation: Compiler and run-time system 
 Where different program objects should be stored 

 All allocation within single virtual address space 

 But why virtual memory?  

 Why not physical memory? 
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Problem 1: How Does Everything Fit? 

5 

64-bit addresses: 
16 Exabyte 

Physical main memory: 
Few Gigabytes 

? 

And there are many processes …. 
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Problem 2: Memory Management 

6 

Physical main memory 

What goes 

where? 

stack 
heap 
.text 

.data 

… 

Process 1 
Process 2 
Process 3 
… 
Process n 

x 
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Problem 3: How To Protect 

7 

Physical main memory 

Process i 

Process j 

Problem 4: How To Share? 
Physical main memory 

Process i 

Process j 
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How would you solve those problems? 
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Indirection 

 “Any problem in CS can be solved by adding  
a level of indirection” - Butler Lampson (now at MSR) 
 
 

 Without Indirection 

 

 

 With Indirection 

 

Name 
Thing 

Name 
Thing 

Thing 
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Indirection 

 Indirection: Indirection is the ability to reference something using a name, 
reference, or container instead the value itself.  A flexible mapping 
between a name and a thing allows changing the thing without notifying 
holders of the name. 

 Without Indirection 

 

 

 With Indirection 

 

 

 Examples:  
Pointers, Domain Name Service (DNS) name->IP address, phone system 
(e.g., cell phone number portability), snail mail (e.g., mail forwarding), 
911 (routed to local office), DHCP, call centers that route calls to available 
operators, etc. 

Name 
Thing 

Name 
Thing 

Thing 
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Solution: Level Of Indirection 
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 Each process gets its own private memory space 

 Solves the previous problems 

Physical memory 

Virtual memory 

Virtual memory 

Process 1 

Process n 

mapping 
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Address Spaces 

 Virtual address space: Set of N = 2n virtual addresses 
  {0, 1, 2, 3, …, N-1} 

 

 Physical address space: Set of M = 2m physical addresses (n >> m) 
  {0, 1, 2, 3, …, M-1} 

 

 Every byte in main memory:  
one physical address, one (or more) virtual addresses 
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Mapping 
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A System Using Physical Addressing 
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 Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames 

0: 
1: 

M-1: 

Main memory 

CPU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
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A System Using Virtual Addressing 
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 Used in all modern desktops, laptops, workstations 

 One of the great ideas in computer science 

 

0: 
1: 

M-1: 

Main memory 

MMU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
 

CPU 

Virtual address 
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Why Virtual Memory (VM)? 

 Efficient use of limited main memory (RAM) 
 Use RAM as a cache for the parts of a virtual address space 

 some non-cached parts stored on disk 

 some (unallocated) non-cached parts stored nowhere 

 Keep only active areas of virtual address space in memory 

 transfer data back and forth as needed 

 Simplifies memory management for programmers 
 Each process gets the same full, private linear address space 

 Isolates address spaces 
 One process can’t interfere with another’s memory  

 because they operate in different address spaces 

 User process cannot access privileged information 

 different sections of address spaces have different permissions 
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VM as Caching 

 Virtual memory: array of N = 2n contiguous bytes 

 think of the array (allocated part) as being stored on disk 

 Physical main memory (DRAM) = cache for allocated virtual memory 

 Blocks are called pages; size = 2p 

PP 2m-p-1 

Physical memory 

Empty 

Empty 

Uncached 

VP 0 

VP 1 

VP 2n-p-1 

Virtual memory 

Unallocated 

Cached 

Uncached 

Unallocated 

Cached 

Uncached 

PP 0 

PP 1 

Empty 

Cached 

0 

2n-1 

2m-1 

0 

Virtual pages (VP's)  
stored on disk 

Physical pages (PP's)  
cached in DRAM 

Disk 
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Memory Hierarchy: Core 2 Duo 
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Disk 

Main 
Memory 

L2 
unified 
cache 

L1  
I-cache 

L1  
D-cache 

CPU Reg 

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput: 

Latency: 100 cycles 14 cycles 3 cycles millions 

~4 MB 

32 KB 

~4 GB ~500 GB 

Not drawn to scale  

L1/L2 cache: 64 B blocks 

Miss penalty (latency): 30x 

Miss penalty (latency): 10,000x 
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DRAM Cache Organization 

 DRAM cache organization driven by the enormous miss penalty 
 DRAM is about 10x slower than SRAM 

 Disk is about 10,000x slower than DRAM 

 For first byte, faster for next byte 

 

 Consequences? 
 Locality? 

 Block size? 

 Associativity? 

 Write-through or write-back? 
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DRAM Cache Organization 

 DRAM cache organization driven by the enormous miss penalty 
 DRAM is about 10x slower than SRAM 

 Disk is about 10,000x slower than DRAM 

 For first byte, faster for next byte 
 

 Consequences 
 Large page (block) size: typically 4-8 KB, sometimes 4 MB 

 Fully associative  

 Any VP can be placed in any PP 

 Requires a “large” mapping function – different from CPU caches 

 Highly sophisticated, expensive replacement algorithms 

 Too complicated and open-ended to be implemented in hardware 

 Write-back rather than write-through 
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A System Using Virtual Addressing 
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How would you do the VA -> PA translation? 
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1: 

M-1: 
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2: 
3: 
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5: 
6: 
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CPU 

Virtual address 
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CPU Chip 
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Address Translation: Page Tables 

 A page table is an array of page table entries (PTEs) that 
maps virtual pages to physical pages. Here: 8 VPs 
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Address Translation With a Page Table 
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Virtual page number (VPN) Virtual page offset (VPO) 
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Page Hit 

 Page hit: reference to VM word is in physical memory 
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Page Miss 

 Page miss: reference to VM word is NOT in physical memory  
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Then what? 
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Fault Example: Page Fault 
 User writes to memory location 

 That portion (page) of user’s memory  
is currently on disk 

 

 

 

 

 

 

 

 

 Page handler must load page into physical memory 

 Returns to faulting instruction 

 Successful on second try 

int a[1000]; 

main () 

{ 

    a[500] = 13; 

} 

 80483b7: c7 05 10 9d 04 08 0d  movl   $0xd,0x8049d10 

User Process OS 

exception: page fault 

Create page and  
load into memory returns 

movl 
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Handling Page Fault 
 Page miss causes page fault (an exception) 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

 Offending instruction is restarted: page hit! 
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Why does it work?   
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Why does it work?  Locality 

 Same reason as cache$! 
 Virtual memory works because of locality 
 

 At any point in time, programs tend to access a set of active 
virtual pages called the working set 
 Programs with better temporal locality will have smaller working sets 

 

 If (working set size < main memory size)  
 Good performance for one process after compulsory misses 

 

 If ( SUM(working set sizes) > main memory size )  
 Thrashing: Performance meltdown where pages are swapped (copied) 

in and out continuously 
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VM as a Tool for Memory Management 
 Key idea: each process has its own virtual address space 

 It can view memory as a simple linear array 

 Mapping function scatters addresses through physical memory 

 Well chosen mappings simplify memory allocation and management 
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VM as a Tool for Memory Management 
 Memory allocation 

 Each virtual page can be mapped to any physical page 

 A virtual page can be stored in different physical pages at different times 

 Sharing code and data among processes 
 Map virtual pages to the same physical page (here: PP 6) 
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Address 
Space for 
Process 1: 

Physical  
Address  
Space 
(DRAM) 

0 

N-1 

(e.g., read-only  
library code) 

Virtual 
Address 
Space for 
Process 2: 

VP 1 

VP 2 
... 

0 

N-1 

VP 1 

VP 2 
... 

PP 2 

PP 6 

PP 8 

... 

0 

M-1 

Address  
translation 



University of Washington 

Virtual Memory 

Simplifying Linking and Loading 

 Linking  
 Each program has similar virtual 

address space 

 Code, stack, and shared libraries 
always start at the same address 

 

 Loading  
 execve() allocates virtual pages 

for .text and .data sections  
= creates PTEs marked as invalid 

 The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system 

 

Kernel virtual memory 

Memory-mapped region for 
shared libraries 

Run-time heap 
(created by malloc) 

User stack 
(created at runtime) 

Unused 
0 

%esp  
(stack  
pointer) 

Memory 
invisible to 
user code 

brk 

0xc0000000 

0x08048000 

0x40000000 

Read/write segment 
(.data, .bss) 

Read-only segment 
(.init, .text, .rodata) 

Loaded  
from  
the  
executable  
file 
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VM as a Tool for Memory Protection 
 Extend PTEs with permission bits 

 Page fault handler checks these before remapping 
 If violated, send process SIGSEGV signal (segmentation fault) 
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Address Translation: Page Hit 
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1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in memory 

4) MMU sends physical address to cache/memory 

5) Cache/memory sends data word to processor 

MMU 
Cache/ 
Memory PA 

Data 

CPU 
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CPU Chip 
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Address Translation: Page Fault 
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1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in memory 

4) Valid bit is zero, so MMU triggers page fault exception 

5) Handler identifies victim (and, if dirty, pages it out to disk) 

6) Handler pages in new page and updates PTE in memory 

7) Handler returns to original process, restarting faulting instruction 

MMU Cache/ 
Memory 

CPU 
VA 

CPU Chip 
PTEA 

PTE 
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3 
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Disk 

Page fault handler 

Victim page 

New page 

Exception 
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Hmm… Translation sounds slow! 

 What can we do? 
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Speeding up Translation with a TLB 

 Page table entries (PTEs) are cached in L1 like any other 
memory word 

 PTEs may be evicted by other data references 

 PTE hit still requires a 1-cycle delay 

 Solution: Translation Lookaside Buffer (TLB) 
 Small hardware cache in MMU 

 Maps virtual page numbers to  physical page numbers 

 Contains complete page table entries for small number of pages 
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TLB Hit 
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MMU 
Cache/ 
Memory 

PA 

Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

4 
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A TLB hit eliminates a memory access 

TLB 

VPN 3 
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TLB Miss 
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MMU 
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Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

5 

6 

TLB 

VPN 

4 

PTEA 

3 

A TLB miss incurs an add’l memory access (the PTE) 
Fortunately, TLB misses are rare 
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Simple Memory System Example 
 Addressing 

 14-bit virtual addresses 

 12-bit physical address 

 Page size = 64 bytes 
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Simple Memory System Page Table 

 Only showing first 16 entries (out of 256) 
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1 0D 0F 

1 11 0E 

1 2D 0D 

0 – 0C 

0 – 0B 

1 09 0A 

1 17 09 

1 13 08 

Valid PPN VPN 

0 – 07 

0 – 06 

1 16 05 

0 – 04 

1 02 03 

1 33 02 

0 – 01 

1 28 00 

Valid PPN VPN 



University of Washington 

Simple Memory System TLB 
 16 entries 

 4-way associative 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

0 – 02 1 34 0A 1 0D 03 0 – 07 3 

0 – 03 0 – 06 0 – 08 0 – 02 2 

0 – 0A 0 – 04 0 – 02 1 2D 03 1 

1 02 07 0 – 00 1 0D 09 0 – 03 0 

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set 
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Simple Memory System Cache 
 16 lines, 4-byte block size 

 Physically addressed 

 Direct mapped 
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11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

03 DF C2 11 1 16 7 

– – – – 0 31 6 

1D F0 72 36 1 0D 5 

09 8F 6D 43 1 32 4 

– – – – 0 36 3 

08 04 02 00 1 1B 2 

– – – – 0 15 1 

11 23 11 99 1 19 0 

B3 B2 B1 B0 Valid Tag Idx 

– – – – 0 14 F 

D3 1B 77 83 1 13 E 

15 34 96 04 1 16 D 

– – – – 0 12 C 

– – – – 0 0B B 

3B DA 15 93 1 2D A 

– – – – 0 2D 9 

89 51 00 3A 1 24 8 

B3 B2 B1 B0 Valid Tag Idx 
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Current state of caches/tables 

03 DF C2 11 1 16 7 

– – – – 0 31 6 

1D F0 72 36 1 0D 5 

09 8F 6D 43 1 32 4 

– – – – 0 36 3 

08 04 02 00 1 1B 2 

– – – – 0 15 1 

11 23 11 99 1 19 0 

B3 B2 B1 B0 Valid Tag Idx 

– – – – 0 14 F 

D3 1B 77 83 1 13 E 

15 34 96 04 1 16 D 

– – – – 0 12 C 

– – – – 0 0B B 

3B DA 15 93 1 2D A 

– – – – 0 2D 9 

89 51 00 3A 1 24 8 

B3 B2 B1 B0 Valid Tag Idx 

Cache 

1 0D 0F 

1 11 0E 

1 2D 0D 

0 – 0C 

0 – 0B 

1 09 0A 

1 17 09 

1 13 08 

Valid PPN VPN 

0 – 07 

0 – 06 

1 16 05 

0 – 04 

1 02 03 

1 33 02 

0 – 01 

1 28 00 

Valid PPN VPN 

0 – 02 1 34 0A 1 0D 03 0 – 07 3 

0 – 03 0 – 06 0 – 08 0 – 02 2 

0 – 0A 0 – 04 0 – 02 1 2D 03 1 

1 02 07 0 – 00 1 0D 09 0 – 03 0 

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set 

TLB 

Page table 
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Address Translation Example #1 

Virtual Address: 0x03D4 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 1 0 1 0 1 1 1 1 0 0 0 0 

0x0F 3 0x03 Y N 0x0D 

0 0 0 1 0 1 0 1 1 0 1 0 

0 0x5 0x0D Y 0x36 
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Address Translation Example #2 

Virtual Address: 0x0B8F 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

1 1 1 1 0 0 0 1 1 1 0 1 0 0 

0x2E 2 0x0B N Y TBD 
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Address Translation Example #3 

Virtual Address: 0x0020 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0x00 0 0x00 N N 0x28 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0x8 0x28 N Mem 
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Disk 

Servicing a Page Fault 

 (1) Processor signals disk controller 
 Read block of length P  

starting at disk address X  

 Store starting at memory address Y 

 (2) Read occurs 
 Direct Memory Access (DMA) 

 Under control of I/O controller 

 (3) Controller signals completion 
 Interrupts processor 

 OS resumes suspended process  
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Summary 

 Programmer’s view of virtual memory 
 Each process has its own private linear address space 

 Cannot be corrupted by other processes 

 

 System view of virtual memory 
 Uses memory efficiently by caching virtual memory pages 

 Efficient only because of locality 

 Simplifies memory management and programming 

 Simplifies protection by providing a convenient interpositioning point 
to check permissions 
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Memory System Summary 

 L1/L2 Memory Cache 
 Purely a speed-up technique 

 Behavior invisible to application programmer and (mostly) OS 

 Implemented totally in hardware 

 Virtual Memory 
 Supports many OS-related functions 

 Process creation, task switching, protection 

 Software 

 Allocates/shares physical memory among processes 

 Maintains high-level tables tracking memory type, source, sharing 

 Handles exceptions, fills in hardware-defined mapping tables 

 Hardware 

 Translates virtual addresses via mapping tables, enforcing permissions 

 Accelerates mapping via translation cache (TLB) 
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