
University of Washington

Computer Systems
CSE 410 Spring 2012
21 – Processes & Threads

25 May 2012 Processes & Threads 1

University of Washington

Processes – Programmer’s View

 Definition: A process is an instance of a running program
 One of the most important ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU

 Private virtual address space

 Each program seems to have exclusive use of main memory

 But what’s really going on underneath?

25 May 2012 Processes & Threads 2

University of Washington

What’s “in” a process?

 A process consists of (at least):
 An address space, containing

 the code (instructions) for the running program

 the data for the running program (static data, heap data, stack)

 CPU state, consisting of

 The program counter (PC), indicating the next instruction

 The stack pointer

 Other general purpose register values

 A set of OS resources

 open files, network connections, sound channels, …

 In other words, it’s all the stuff you need to run the program
 or to re-start it, if it’s interrupted at some point

25 May 2012 Processes & Threads 3

University of Washington

The OS’s process namespace

 (Like most things, the particulars depend on the specific OS,
but the principles are general)

 The name for a process is called a process ID (PID)
 An integer

 The PID namespace is global to the system
 Only one process at a time has a particular PID

 Operations that create processes return a PID
 E.g., fork()

 Operations on processes take PIDs as an argument
 E.g., kill(), wait(), nice()

25 May 2012 Processes & Threads 4

University of Washington

Representation of processes by the OS

 The OS maintains a data structure to keep track of a process’s
state
 Called the process control block (PCB) or process descriptor
 Identified by the PID

 OS keeps all of a process’s execution state in (or linked from)
the PCB when the process isn’t running
 PC, SP, registers, etc.
 when a process is unscheduled, the state is transferred out of the

hardware into the PCB
 (when a process is running, its state is spread between the PCB and the

CPU)

 Note: It’s natural to think that there must be some esoteric
techniques being used
 fancy data structures that you’d never think of yourself

 Wrong! It’s pretty much just what you’d think of!

25 May 2012 Processes & Threads 5

University of Washington

The PCB

 The PCB is a data structure with many, many fields:
 process ID (PID)

 parent process ID

 execution state

 program counter, stack pointer, registers

 address space info

 UNIX user id, group id

 scheduling priority

 accounting info

 pointers for state queues

 In Linux:
 defined in task_struct (include/linux/sched.h)

 over 95 fields!!!

25 May 2012 Processes & Threads 6

University of Washington

PCBs and CPU state (1)

 When a process is running, its CPU state is inside the CPU
 PC, SP, registers

 CPU contains current values

 When the OS gets control because of a …
 Trap: Program executes a syscall

 Exception: Program does something unexpected (e.g., page fault)

 Interrupt: A hardware device requests service

the OS saves the CPU state of the running process in that
process’s PCB

25 May 2012 Processes & Threads 7

University of Washington

PCBs and CPU state (2)

 When the OS returns the process to the running state, it
loads the hardware registers with values from that process’s
PCB – general purpose registers, stack pointer, instruction
pointer

 The act of switching the CPU from one process to another is
called a context switch
 systems may do 100s or 1000s of switches/sec.

 takes a few microseconds on today’s hardware

 Choosing which process to run next is called scheduling

25 May 2012 Processes & Threads 8

University of Washington

The OS kernel is not a process

 It’s just a block of code!

 (In a microkernel OS, many things that you normally think of
as the operating system execute as user-mode processes. But
the OS kernel is just a block of code.)

25 May 2012 Processes & Threads 9

University of Washington

This is (a

simplification of)

what each of those

PCBs looks like

inside!

Process ID

Pointer to parent

List of children

Process state

Pointer to address space descriptor

Program counter

stack pointer

(all) register values

uid (user id)

gid (group id)

euid (effective user id)

Open file list

Scheduling priority

Accounting info

Pointers for state queues

Exit (“return”) code value

25 May 2012 Processes & Threads 10

University of Washington

Process execution states

 Each process has an execution state, which indicates what it’s
currently doing
 ready: waiting to be assigned to a CPU

 could run, but another process has the CPU

 running: executing on a CPU

 it’s the process that currently controls the CPU

 waiting (aka “blocked”): waiting for an event, e.g., I/O completion, or a
message from (or the completion of) another process

 cannot make progress until the event happens

 As a process executes, it moves from state to state
 UNIX: run ps, STAT column shows current state

 which state is a process in most of the time?

25 May 2012 Processes & Threads 11

University of Washington

Process states and state transitions

running

ready

blocked

trap or exception

(I/O, page fault,

etc.)

interrupt

(unschedule)
dispatch /

schedule

interrupt

(I/O complete)

You can create

and destroy

processes!

create

terminate

25 May 2012 Processes & Threads 12

University of Washington

State queues

 The OS maintains a collection of queues that represent the
state of all processes in the system
 typically one queue for each state

 e.g., ready, waiting, …

 each PCB is queued onto a state queue according to the current state of
the process it represents

 as a process changes state, its PCB is unlinked from one queue, and
linked onto another

 Once again, this is just as straightforward as it sounds! The
PCBs are moved between queues, which are represented as
linked lists. There is no magic!

25 May 2012 Processes & Threads 13

University of Washington

State queues

 There may be many wait queues, one for each type of
wait (particular device, timer, message, …)

head ptr

tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207) head ptr

tail ptr

Wait queue header

Ready queue header

These are PCBs!

25 May 2012 Processes & Threads 14

University of Washington

PCBs and state queues

 PCBs are data structures
 dynamically allocated inside OS memory

 When a process is created:
 OS allocates a PCB for it

 OS initializes PCB

 (OS does other things not related to the PCB)

 OS puts PCB on the correct queue

 As a process computes:
 OS moves its PCB from queue to queue

 When a process is terminated:
 PCB may be retained for a while (to receive signals, etc.)

 eventually, OS deallocates the PCB

25 May 2012 Processes & Threads 15

University of Washington

Review: What’s “in” a process?

 A process consists of (at least):
 An address space, containing

 the code (instructions) for the running program
 the data for the running program

 Thread state, consisting of
 The program counter (PC), indicating the next instruction
 The stack pointer register (implying the stack it points to)
 Other general purpose register values

 A set of OS resources
 open files, network connections, sound channels, …

 That’s a lot of concepts bundled together!
 Decompose …

 address space
 thread of control (stack, stack pointer, program counter, registers)
 OS resources

25 May 2012 16 Processes & Threads

University of Washington

The Big Picture

 Threads are about concurrency and parallelism
 Parallelism: physically simultaneous operations for performance

 Concurrency: logically (and possibly physically) simultaneous
operations for convenience/simplicity

 One way to get concurrency and parallelism is to use multiple
processes
 The programs (code) of distinct processes are isolated from each other

 Threads are another way to get concurrency and parallelism
 Threads “share a process” – same address space, same OS resources

 Threads have private stack, CPU state – are schedulable

25 May 2012 17 Processes & Threads

University of Washington

Concurrency/Parallelism

 Imagine a web server, which might like to handle multiple requests
concurrently
 While waiting for the credit card server to approve a purchase for one client, it

could be retrieving the data requested by another client from disk, and
assembling the response for a third client from cached information

 Imagine a web client (browser), which might like to initiate multiple
requests concurrently
 The CSE home page has dozens of “src= …” html commands, each of which is

going to involve a lot of sitting around! Wouldn’t it be nice to be able to launch
these requests concurrently?

 Imagine a parallel program running on a multiprocessor, which might like
to employ “physical concurrency”
 For example, multiplying two large matrices – split the output matrix into k

regions and compute the entries in each region concurrently, using k
processors

25 May 2012 18 Processes & Threads

University of Washington

What’s needed?

 In each of these examples of concurrency (web server, web
client, parallel program):
 Everybody wants to run the same code

 Everybody wants to access the same data

 Everybody has the same privileges

 Everybody uses the same resources (open files, network connections,
etc.)

 But you’d like to have multiple hardware execution states:
 an execution stack and stack pointer (SP)

 traces state of procedure calls made

 the program counter (PC), indicating the next instruction

 a set of general-purpose processor registers and their values

25 May 2012 19 Processes & Threads

University of Washington

How could we achieve this?

 Given the process abstraction as we know it:
 fork several processes

 cause each to map to the same physical memory to share data

 see the shmget() system call for one way to do this (kind of)

 This is like making a pig fly – it’s really inefficient
 space: PCB, page tables, etc.

 time: creating OS structures, fork/copy address space, etc.

 Some equally bad alternatives for some of the examples:
 Entirely separate web servers

 Manually programmed asynchronous programming (non-blocking I/O)
in the web client (browser)

25 May 2012 20 Processes & Threads

University of Washington

Can we do better?

 Key idea:
 separate the concept of a process (address space, OS resources)

 … from that of a minimal “thread of control” (execution state: stack,
stack pointer, program counter, registers)

 This execution state is usually called a thread, or sometimes,
a lightweight process

25 May 2012 21 Processes & Threads

thread

University of Washington

Threads and processes

 Most modern OS’s (Mach (Mac OS), Chorus, Windows, UNIX)
therefore support two entities:
 the process, which defines the address space and general process

attributes (such as open files, etc.)

 the thread, which defines a sequential execution stream within a
process

 A thread is bound to a single process / address space
 address spaces, however, can have multiple threads executing within

them

 sharing data between threads is cheap: all see the same address space

 creating threads is cheap too!

 Threads become the unit of scheduling
 processes / address spaces are just containers in which threads execute

25 May 2012 22 Processes & Threads

University of Washington

Threads

 Threads are concurrent executions sharing an address space
(and some OS resources)

 Address spaces provide isolation
 If you can’t name it, you can’t read or write it

 Hence, communicating between processes is expensive
 Must go through the OS to move data from one address space to

another

 Because threads are in the same address space,
communication is simple/cheap
 Just update a shared variable!

25 May 2012 23 Processes & Threads

University of Washington

The design space

address

space

thread

one thread per process

many processes

many threads per process

many processes

one thread per process

one process

many threads per process

one process

MS/DOS

Java

older

UNIXes

Mach, NT,

Chorus,

Linux, …

Key

25 May 2012 Processes & Threads 24

University of Washington

(old) Process address space

25 May 2012 25 Processes & Threads

0x00000000

0xFFFFFFFF

address space

code

(text segment)

static data

(data segment)

heap

(dynamic allocated mem)

stack

(dynamic allocated mem)

PC

SP

University of Washington

(new) Address space with threads

25 May 2012 26 Processes & Threads

0x00000000

0xFFFFFFFF

address space

code

(text segment)

static data

(data segment)

heap

(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)

thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)

PC (T3)

University of Washington

Process/thread separation

 Concurrency (multithreading) is useful for:
 handling concurrent events (e.g., web servers and clients)

 building parallel programs (e.g., matrix multiply, ray tracing)

 improving program structure (the Java argument)

 Multithreading is useful even on a uniprocessor
 even though only one thread can run at a time

 Supporting multithreading – that is, separating the concept of
a process (address space, files, etc.) from that of a minimal
thread of control (execution state), is a big win
 creating concurrency does not require creating new processes

 “faster / better / cheaper”

25 May 2012 27 Processes & Threads

University of Washington

Terminology

 Just a note that there’s the potential for some confusion …
 Old world: “process” == “address space + OS resources + single

thread”

 New world: “process” typically refers to an address space + system
resources + all of its threads …

 When we mean the “address space” we need to be explicit

 “thread” refers to a single thread of control within a process / address
space

 A bit like “kernel” and “operating system” …
 Old world: “kernel” == “operating system” and runs in “kernel mode”

 New world: “kernel” typically refers to the microkernel; lots of the
operating system runs in user mode

25 May 2012 28 Processes & Threads

University of Washington

“Where do threads come from, Mommy?”

 Natural answer: the OS is responsible for creating/managing
threads
 For example, the kernel call to create a new thread would

 allocate an execution stack within the process address space

 create and initialize a Thread Control Block

– stack pointer, program counter, register values

 stick it on the ready queue

 We call these kernel threads

 There is a “thread name space”

 Thread id’s (TID’s)

 TID’s are integers (surprise!)

25 May 2012 29 Processes & Threads

University of Washington

address

space

thread

Mach, NT,

Chorus,

Linux, …

os kernel

(thread create, destroy, signal,

wait, etc.)

CPU

Kernel threads

25 May 2012 30 Processes & Threads

University of Washington

Kernel threads

 OS now manages threads and processes / address spaces
 all thread operations are implemented in the kernel

 OS schedules all of the threads in a system

 if one thread in a process blocks (e.g., on I/O), the OS knows about
it, and can run other threads from that process

 possible to overlap I/O and computation inside a process

 Kernel threads are cheaper than processes
 less state to allocate and initialize

 But, they’re still pretty expensive for fine-grained use
 orders of magnitude more expensive than a procedure call

 thread operations are all system calls

 context switch

 argument checks

 must maintain kernel state for each thread

25 May 2012 31 Processes & Threads

University of Washington

“Where do threads come from, Mommy?” (2)

 There is an alternative to kernel threads

 Threads can also be managed at the user level (that is,
entirely from within the process)
 a library linked into the program manages the threads

 because threads share the same address space, the thread manager
doesn’t need to manipulate address spaces (which only the kernel
can do)

 threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

 the thread package multiplexes user-level threads on top of kernel
thread(s)

 each kernel thread is treated as a “virtual processor”

 we call these user-level threads

25 May 2012 32 Processes & Threads

University of Washington

(thread create, destroy,

signal, wait, etc.)

user-level

thread library

33

address

space

thread

os kernel

CPU

User-level threads

25 May 2012 Processes & Threads 33

University of Washington

34 34

address

space

thread

os kernel

CPU

User-level threads: what the kernel sees

25 May 2012 Processes & Threads 34

University of Washington

user-level

thread library

(thread create, destroy,

signal, wait, etc.)

35

address

space

thread

Mach, NT,

Chorus,

Linux, …

os kernel

(kernel thread create, destroy,

signal, wait, etc.)

CPU

User-level threads: the full story

kernel threads

25 May 2012 Processes & Threads 35

University of Washington

User-level threads

 User-level threads are small and fast
 managed entirely by user-level library

 E.g., pthreads (libpthreads.a)

 each thread is represented simply by a PC, registers, a stack, and a
small thread control block (TCB)

 creating a thread, switching between threads, and synchronizing
threads are done via procedure calls

 no kernel involvement is necessary!

 user-level thread operations can be 10-100x faster than kernel threads
as a result

25 May 2012 36 Processes & Threads

University of Washington

37

User-level thread implementation

 The OS schedules the kernel thread

 The kernel thread executes user code, including the thread
support library and its associated thread scheduler

 The thread scheduler determines when a user-level thread
runs
 it uses queues to keep track of what threads are doing: run, ready, wait

 just like the OS and processes

 but, implemented at user-level as a library

25 May 2012 37 Processes & Threads

University of Washington

Thread context switch

 Very simple for user-level threads:
 save context of currently running thread

 push CPU state onto thread stack

 restore context of the next thread

 pop CPU state from next thread’s stack

 return as the new thread

 execution resumes at PC of next thread

 Note: no changes to memory mapping required!

 This is all done by assembly language
 it works at the level of the procedure calling convention

 thus, it cannot be implemented using procedure calls

25 May 2012 38 Processes & Threads

University of Washington

How to keep a user-level thread from
hogging the CPU?

 Strategy 1: force everyone to cooperate
 a thread willingly gives up the CPU by calling yield()

 yield() calls into the scheduler, which context switches to another
ready thread

 what happens if a thread never calls yield()?

 Strategy 2: use preemption
 scheduler requests that a timer interrupt be delivered by the OS

periodically

 usually delivered as a UNIX signal (man signal)

 signals are just like software interrupts, but delivered to user-level
by the OS instead of delivered to OS by hardware

 at each timer interrupt, scheduler gains control and context switches as
appropriate

25 May 2012 39 Processes & Threads

University of Washington

What if a thread tries to do I/O?

 The kernel thread “powering” it is lost for the duration of the
(synchronous) I/O operation!
 The kernel thread blocks in the OS, as always

 It maroons with it the state of the user-level thread

 Could have one kernel thread “powering” each user-level
thread
 “common case” operations (e.g., synchronization) would be quick

 Could have a limited-size “pool” of kernel threads “powering”
all the user-level threads in the address space
 the kernel will be scheduling these threads, obliviously to what’s going

on at user-level

25 May 2012 40 Processes & Threads

University of Washington

user-level

thread library

(thread create, destroy,

signal, wait, etc.)

41

address

space

thread

os kernel

(kernel thread create, destroy,

signal, wait, etc.)

CPU

Multiple kernel threads “powering”

each address space

kernel threads

25 May 2012 Processes & Threads 41

University of Washington

Addressing these problems

 Effective coordination of kernel decisions and user-level
threads requires OS-to-user-level communication
 OS notifies user-level that it is about to suspend a kernel thread

 This is called “scheduler activations”
 a research paper from UW with huge effect on practice

 each process can request one or more kernel threads

– process is given responsibility for mapping user-level threads
onto kernel threads

– kernel promises to notify user-level before it suspends or
destroys a kernel thread

 ACM TOCS 10,1

25 May 2012 42 Processes & Threads

University of Washington

Summary

 You really want multiple threads per address space

 Kernel threads are much more efficient than processes, but
they’re still not cheap
 all operations require a kernel call and parameter validation

 User-level threads are:
 really fast/cheap

 great for common-case operations

 creation, synchronization, destruction

 can suffer in uncommon cases due to kernel obliviousness

 I/O

 preemption of a lock-holder

 Scheduler activations are an answer
 pretty subtle though

25 May 2012 43 Processes & Threads

University of Washington

The design space

25 May 2012 44 Processes & Threads

address

space

thread

one thread/process

many processes

many threads/process

many processes

one thread/process

one process

many threads/process

one process

MS/DOS

Java

older

UNIXes

Mach, NT,

Chorus,

Linux, …

