
Interfaces, Mixins, &

Multiple Inheritance

CSE 413 Spring 2011

Based on CSE341, Sp08/Sp11

Overview

 Essence of object-oriented programming:

inheritance, overriding, dynamic-dispatch

 Classic inheritance includes specification

(types) and implementation (code)

 What about multiple inheritance

(>1 superclass)?

When does it make sense?

What are the issues?

Inheritance Models

 Single Inheritance: at most 1 superclass

Subclass inherits methods and state from
superclass; can override methods, add more
methods and instance variables

 Multiple Inheritance: >1 superclass

Useful – factor different traits/behavior to
small classes, then extend several of them

But hard to use well (e.g., C++)
 Typical problem: big, brittle inheritance graph,

methods migrate to bloated superclasses over
time; becomes (very) hard to make changes

Inheritance Models

 Java-style interfaces: >1 type

Doesn’t apply to dynamically-typed languages

Class “inherits” (has) multiple types, but

Only inherits code from one parent class

Fewer problems than multiple inheritance

 Mixins: >1 “source of methods”

Similarities to multiple inheritance – many of
the goodies with fewer(?) problems

Multiple Inheritance

 If single inheritance is so useful, why not
allow multiple superclasses?

Semantic and implementation complexities

Typing issues w/static typing

 Is it useful? Sure:

Color3DPoint extends 3DPoint, ColorPoint

 Naïve view: subclass has all fields and
methods of all superclasses

Trees, DAGs, and Diamonds

 Class hierarchy forms a graph
Edges from subclasses to superclasses

Single inheritance: a tree

Multiple inheritance: a DAG

 Diamonds
With multiple inheritance, may be multiple ways

to show that A is a (transitive) subclass of B

 If all classes are transitive subclasses of e.g.
Object, multiple inheritance always leads to
diamonds

Multiple Inheritance:

Semantic Issues
 What if multiple superclasses define the same

message m or field f ?

 Classic example: Artists, Cowboys, ArtistCowboys

 Options for method m:

 Reject subclass as ambiguous – but this is too
restrictive (esp. w/diamonds)

 “Left-most superclass wins” – too restrictive (want
per-method flexibility) + silent weirdness

 Require subclass to override m (can use explicitly
qualified calls to inherited methods)

Multiple Inheritance:

Semantic Issues

 Options for field f : One copy of f or multiple
copies?

Multiple copies: what you want if Artist::draw and
Cowboy::draw use inherited fields differently

Single copy: what you want for Color3dPoint
x and y coordinates

 C++ provides both kinds of inheritance

Either two copies always, or one copy if field
declared in same (parent) class

Java-Style Interfaces

 In Java we can define interfaces and

classes can implement them

 Interface describes methods and types

 Interface is a type – can have variables,

parameters, etc. with that type

 If class C implements interface I, then

instances of C have type I but must define

everything in I (directly or via inheritance)

Interfaces are all about Types

 In Java, we can have 1 immediate superclass
and implement any number of interfaces

 Interfaces provide no methods or fields – no
duplication problems
 If I1 and I2 both include some method m,

implementing class must provide it somehow

 But this doesn’t allow what we want for
Color3DPoints or ArtistCowboys
No code inheritance/reuse possible

Java Interfaces and Ruby

 Concept is totally irrelevant for Ruby

We can already send any message to any

object (dynamic typing)

We need to get it right (can always ask an

object what messages it responds to)

Interfaces vs Abstract Classes

 Interfaces are not needed in C++. Why?

 C++ allows methods and classes to be abstract
 Specified in class declaration but not provided in

implementation (same as Java)

 Called pure virtual methods in C++

 So a class can extend multiple abstract classes
 Same as implementing interfaces

 But if that’s all you need, you don’t need multiple
inheritance
 Multiple inheritance is not just typing

Mixins

 A mixin is a collection of methods

 No fields, constructors, instances, etc.

 Typically a language with mixins allows 1
superclass and any number of mixins

 We’ve seen this in Ruby

 Bad news: less powerful than multiple inheritance
(what is in a class, what is in a mixin?)

 Good news: Clear semantics, great for certain
idioms (Enumerate, Comparable using each, <=>)

