Introduction to Database Systems
CSE 444

Lectures 11-12
Transactions: Recovery (ARIES)

Readings

» Material in today’s lecture NOT in the book

» Instead, read Sections 1, 2.2, and 3.2 of: Michael J.
Franklin. Concurrency Control and Recovery. The

Handbook of Computer Science and Engineering, A.
Tucker, ed., CRC Press, Boca Raton, 1997.

» (Also, chapter 18 of the “cow book”)

Review: the ACID properties

O TEE EEm EEm EE WS N EEE EEE EED EEN EEN EEE T EEE EEE EES BEN BEE BEN SEN SEN B SEE MmN MEE MEE SEN SEm EEm M S e e e e e e

» Consistency

If each Xact is consistent, and the DB starts consistent, it ends
up consistent

» Isolation
Execution of one Xact is isolated from others

SN Em o O S SN WEE WSS WSS WEM SN WEE S WSS WSS WSS WEN WEN WSS WS WEE M S S M M RSN SEm MEm S S e e e Sme e S

———————————————————————————————————————

Which ones does the Recovery Manager help with?

“(also consistency related rollbacks)
3

Bufifer Manager

Page requests from higher-level code
READ/WRITE | Files and access methods

Buffer pool manager

Buffer pool |
. 0 |
Disk page —1— > _ dirty

Main
Free frame —|— 1 1 memory

pin count
| |

choice of frame dictated

|NPUT/OUTPUT by replacement policy

Disk space manager

Disk = collection i
of blocks Disk 1 page corresponds

to 1 disk block

e Data must be in RAM for DBMS to operate on it!
e Buffer pool = table of <frame#, pageid> pairs

Buifer Manager Policies
» STEAL or NO-STEAL

Can an update made by an uncommitted transaction overwrite
the most recent committed value of a data item on disk?

» FORCE or NO-FORCE

Should all updates of a transaction be forced to disk before the
transaction commits?

No Steal Steal No Steal Steal
No UNDO UNDO
No Force Fastest No Force REDO REDO
Force | Slowest Force No UNDO UNDO
No REDO No REDO

ARIES Recovery Algorithm Overview

Three phases:

1. Analysis
Figure out what was going on at time of crash
List of dirty pages and active transactions

2. Redo

Redo all operations, even for transactions that will not commit
Get back to state at the moment of the crash

3. Undo

Remove effects of all uncommitted transactions
Log changes during undo in case of another crash during undo

Algorithms for Recovery and Isolation Exploiting Semantics

ARIES Recovery Algorithm Overview

Three principles:
1. Write-Ahead Logging (WAL)

Any change to a DB object is first recorded to the log

A log record must be written to disk before the corresponding
object

2. Repeating history
Reinstate the exact state of the system before the crash

3. Logging changes during UNDO

Log UNDOs so we don'’t repeat in a subsequent crash

Write-Ahead Log

1. Must force the log record of an update before the
corresponding data page gets to disk

<T,X,u,v> OUTPUT(X)
=

P before —>
Disk _ Disk _

2. Must force all log records for a Xact before commit

Xact is considered committed when its commit log record
makes it to stable storage.

<T,X,u,v>..<COMMIT T>
s L

Disk
#1 (with UNDO info) helps guarantee atomicity
#2 (with REDO info) helps guarantee durability

before —> Xact commit

The Log

» Each log record has a unique

Log Sequence Number (LSN)
Always increasing

» Each data page contains a pagelLSN

The LSN of the most recent log record that

updated that page

» System keeps track of flushedLSN
Max LSN flushed to stable storage

Log records_|
flushed to
disk

flushedLSN

pagelLSN,

Page,
e

/

“log tail” |
in RAM

LSN increasing

Types of Log Records

» Update

Whenever a page is modified, and update record is appended to the
log tail

» Commit

When a Xact commits it force-writes a commit log record (i.e. flushes

the log tail, up to and including this record). The Xact is considered
committed the moment this record is on stable storage

» Abort
When a transaction is aborted (initiates rollback)
» End

When a Xact aborts or commits additional actions are initiated (e.g.
rollback). Once those finish, an end record is appended

» CLR
Compensation Log Record: Logs the UNDOs

» Checkpoint

10

Log Records

The previous LSN of the The ID of the disk page
Xact. NULL if this is the that is modified
first record \ \
LSN prevLSN transID type pagelD length offset before-image after-image
A
Y Y
Fields common to all Additional fields for
log records update log records

» CLR records
REDO only: they do not get undone

Only contain after-image

Additional undoNextLSN field
Points to the next log record of the Xact that should be undone

11

Other Recovery-Related Structures

Transaction Table

transiD

status

lastLSN

Dirty Page Table

/

A

pagelD

recLSN +

First log entry that

/

dirtied the page

The most recent log
record for the Xact

running/committing/aborting

12

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF

13

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN
T1 running 10 P5 10 pS
pagelLSN=10
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF

14

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN
T1 running 10 P5 10 pS
pagelLSN=10
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF
20 null T2 update P6 3 41 H1J KLM

15

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN
T1 running 10 P5 10 pS PG
T2 running 20 P6 20 pagelSN=10 | pagelSN=20
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF
20 null T2 update P6 3 41 HIJ KLM

16

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN

T1 running 10 P5 10 pS PG

T2 running 20 P6 20 pagelSN=10 | pagelSN=20
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF
20 null T2 update P6 3 41 HIJ KLM
30 20 T2 update P5 3 20 GDE QRS

17

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN

T1 running 10 P5 10 pS PG

T2 running 30 P6 20 pagelsN=30 | pagelSN=20
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF
20 null T2 update P6 3 41 HIJ KLM
30 20 T2 update P5 3 20 GDE QRS

18

————=
2N
A

p————

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN

T1 running 10 P5 10 pS PG

T2 running 30 P6 20 pagelSN=30 | pagelSN=20
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF
20 null T2 update P6 3 41 HIJ KLM
30 20 T2 update P5 3 20 GDE QRS
40 10 T1 update P7 3 21 TUV WXY

19

————=
2N
4

p————

Example of Recovery Structures

Transaction Table Dirty Page Table Buffer Pool
transID | status | lastLSN pagelD recLSN
T1 running 40 P5 10 pS PG
T2 running 30 P6 20 pagelsN=30 | pagelSN=20
P7 40 P7
pageLSN=40
LSN prevLSN transID type pagelD length offset before-image after-image
10 null T1 update P5 3 21 ABC DEF
20 null T2 update P6 3 41 HIJ KLM
30 20 T2 update P5 3 20 GDE QRS
40 10 T1 update P7 3 21 TUV WXY

20

Normal Execution

» Update transaction table on Xact start/end

» For each update:

Create log record with LSN Z=++MaxLSN and
prevLSN=TransTable[transID].lastLSN

Update TransTable[transID].lastLSN=¢
If modified page not in dirty table, add it with recLSN=¢

» If the buffer manager steals a dirty page, remove its entry
from the DPT

21

Transaction Commit

» Write commit record to log

» Flush the log tail up to Xact’s commit to disk
WAL rule #2: flushedLSN > lastLSN

Note that log flushes are sequential, synchronous writes, so
cheaper than forcing updated data

» Remove entry from the TransTable

» Write end record to log

22

Transaction Abort (no crash)

» Write abort log record before starting rollback

» “Play back” undoing all updates
Get lastLSN of Xact from the TransTable
Follow chain of log records via prevLSN

For each update encountered

Write a CLR for each undone operation with undoNextLSN = prevLSN of
record being undone

Undo the operation (using the before-image of the log record)

» Remove entry from the TransTable

» Write end record to log

23

Checkpoints

» begin_checkpoint
Indicates where checkpoint began

» end_checkpoint

Contains the Transaction Table and the Dirty Page Table as they
were at begin_checkpoint

» Store the LSN of the most recent checkpoint at a master
record on disk

24

The Big Picture: What’s Where

log

- '/w /
—

Log Records Data pages Transaction Table
LSN Each with a lastLSN
prevLSN pagelLSN status
transiD
type Master record Dirty Page Table

LSN of most recLSN

recent checkpoint

flushedLSN

25

Crash Recovery: Big Picture

» Start from a checkpoint (found from
Oldest log rec. master record)
of Xact active

at crash

—c)
0]0]

» Three phases:

Analysis — update structures

Smallest)
TransTable: active Xacts at crash

recLSN in DPT
after Analysis Q DBT: pages that might be dirty at crash
5 REDO everything (repeat history)
ol ™ :

Last chkpt —— a Start at the smallest recLSN in DPT
Y UNDO failed Xacts
A Y
i _E Stop at the oldest LSN of active Xact
<
-

CRASH — Vv Vv

26

Phase 1: Analysis

» Goal
Determine point in log where to start REDO

Determine set of dirty pages when crashed
Conservative estimate

|dentify active transactions when crashed (loser transactions)

» Approach
Rebuild active transactions table and dirty pages table
Compute: firstLSN = smallest of all recLSN in DPT

27

Phase 1: Analysis

» Load the Transaction Table and Dirty Page Table stored at
the checkpoint

» Scan log forward from checkpoint
end record: remove Xact from TransTable

All other records:
add Xact to TransTable (if not there)
Set lastLSN=LSN
Change status accordingly

update record: if P not in DPT, add it with recLSN=LSN

28

Analysis

Phase 1

29

a N\ >/ / I
m R AR
Q1 = 0 LZ0 0
< |3 e T S
— o Q! | 1
o 5 - s
o0 AL Le—mdemmLm—d
2 S | LT
a | o B8,] 1
>| g A
o »
=1 8 -
@ _/ .
P
(V)
o | — T 1/ r-mm=mr==Tr-="
Q 1 | | 1
2
£ z N
7 ol 2 . .
()] o) % 1 % 1 1 1
o _qla —_— 1 _ 1 1 |
© Lo ___Ll__
e c A R
N o| 3 - SR
B = 1 w0 1 1
S| 3 T
w 1 | 1 1
c r=-=--=-- m--T---
©o| o . |
- =z 1 o | 1 1
— c | c | 1
© .
+ 1 = 1 1 1
L e o R T
zZ
V)
—
)
(Vs
S
J=
>
o T
- v
< <
o (a'es
..& @)
S

Phase 2: REDO

Principles:
» Scan the log forward from firstLSN < Why start here?

» Read all records sequentially, and reapply all updates

» Do not record REDO actions in the log

» Needs the DPT

30

Phase 2: REDO

Details:
» For each updateable record (update or CLR) REDO the
action, unless:
Affected page not in DPT
Affected page in DPT but recLSN > LSN
pagelLSN (in DB) = LSN (requires I/0O)

» To REDO:
Reapply logged action
Set pagelLSN to LSN

31

Phase 3: UNDO

Principles:
» Start from the end of the log, move backwards

» Read only affected log entries (loser Xacts)

» Undo actions logged as special entries: CLR (Compensation Log
Records)

» CLRs are redone, but never undone

32

Phase3: UNDO

Details:
» Loser Xacts: all Xacts in the Transaction Table
» ToUndo = {lastLSN of all Loser Xacts}

» While ToUndo is not empty:

Choose the most recent (largest) LSN in ToUndo
If LSN is a CLR and undoNextLSN=null

Write end record for Xact
If LSN is a CLR and undoNextLSN # null

Add undoNextLSN to ToUndo

If LSN is an update
Undo the action
Write a CLR
Add prevLSN to ToUndo

33

£)

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

LSN

Example of Recovery — (up to crash)

LOG

00
05
10
20
30
40
45
50
60

begin_checkpoint

end_checkpoint

update: T1 writes P5
update T2 writesy\
T1 abort =
—— CLR: Undo T1 LSN 10, Und%Nxt:NuID

—=— T1 End >

— update: T3 writes P1 /
update: T2 writes P5

< CRASH, RESTART

34

LSN

LOG

Trans Table
Trans | lastLSN | Stat
T2 60 r
13 50 r

Dirty Page Table

Pageld recLSN
P5 10
P3 20
P1 50

00
05
10
20
30
40
45
50
60

—— begin_checkpoint

update:
—— update T2 writes P3

—-—T1 abort \J\

— end_checkpoint

T1 writes P5

—:—Tl End

— update:
- update:
>< CRASH, RESTART

Nxt= NuIIj

>

T3 writes P1
T2 writes P5

Redo starts at LSN 10;
in this case, reads P5, P3, and P1 from
disk, redoes ops if pageLSN < LSN

J

ToUndo set initializes to {50,60}

35

LSN LOG
00 — begin_checkpoint

After Analysis & REDO:

ToUndo: {50, 6,8} 10 — update: T1 writes P5

20 "‘ update T2 writesy\
ToUndo: {5{), 20} 30 —§-T1 2bort _

05 — end_checkpoint

40 — CLR: Undo T1 LSN 10, Und Nxt:Nullj

ToUndo: {20} 45 ——T1End S
50 "‘ update: T3 writes P1

After Analysis & REDO: 60 —— update: T2 writes P5
ToUndo: {70} >< CRASH, RESTART ‘j
N 70 i CLR:Undo T2 LSN 60; UndoNxtLSN=20
80 * CLR:Undo T3 LSN 50;UndoNxtLSN=null
ToUndo: {20} : >
R 85 & T3 end

SZ CRASH, RESTART
ToUndo: {} 90 : CLR: Undo T2 LSN 20:UndoNxtLSN=null

100 T2 end)

Discussion
» What if we crash during Analysis? During REDO?

» How can we reduce the amount of work in Analysis?

» How do we reduce the amount of work in REDO?

» What affects the amount of work in UNDQ?

37

