
Example	
 queries	
 from	
 lecture	
 cse444	

http://www.cs.washington.edu/education/courses/cse444/11wi/
version Jan 7, 2011

Motivation: this document should make it easy for you to get started and repeat (and tweak) some queries we see in class. Just copy and
paste the grey areas into SQL server and execute. If you see something that bothers you, please let us or the TAs know.

Lecture	
 2:	
 our	
 first	
 DISTINCT	
 /	
 ORDER	
 BY	
 queries	

-- Create Company tables.

-- Comments in SQL are just two dashes.

-- First statements checks if table already defined (don't let yourself get confused, just ignore).
if exists (select table_name
 from information_schema.tables
 where table_name= 'Company') drop table Company;

create table Company (
 CName char(20) PRIMARY KEY,
 StockPrice int,
 Country char(20));

insert into Company values ('GizmoWorks', 25, 'USA');
insert into Company values ('Canon', 65, 'Japan');
insert into Company values ('Hitachi', 15, 'Japan');

select * from Company;

CName StockPrice Country
Canon 65 Japan
GizmoWorks 25 USA
Hitachi 15 Japan

-- Attempt a key violation.
insert into Company values ('Canon', 65, 'USA');

Msg 2627, Level 14, State 1, Line 1
Violation of PRIMARY KEY constraint 'PK__Company__85D445AB0519C6AF'. Cannot insert duplicate key in object 'dbo.Company'.
The duplicate key value is (Canon).
The statement has been terminated.

-- Create Product tables.

if exists (select table_name
 from information_schema.tables
 where table_name= 'Product') drop table Product;

-- Alternative syntax to specify key constraint. Note that "constraint some_name" is optional.
create table Product (
 PName char(20),
 Price decimal(9, 2),

 Category char(20),
 Manufacturer char(20),

CONSTRAINT some_name PRIMARY KEY (PName));

insert into Product values ('Gizmo', 19.99, 'Gadgets', 'GizmoWorks');
insert into Product values ('PowerGizmo', 29.99, 'Gadgets', 'GizmoWorks');
insert into Product values ('SingleTouch', 149.99, 'Photography', 'Canon');
insert into Product values ('MultiTouch', 203.99, 'Household', 'Hitachi');

select * from Product;

PName Price Category Manufacturer
Gizmo 19.99 Gadgets GizmoWorks
MultiTouch 203.99 Household Hitachi
PowerGizmo 29.99 Gadgets GizmoWorks
SingleTouch 149.99 Photography Canon

-- We realize we forgot the foreign key constraints. Le's make up for that.
alter table Product
ADD FOREIGN KEY (Manufacturer) REFERENCES Company(CName);

-- Here how we could have defined both key and foreign key constraint while defining the table. Remember SQL is not case sensitive.
create table Product (
 PName char(20) PRIMARY KEY,
 Price decimal(9, 2),
 Category char(20),
 Manufacturer char(20) FOREIGN KEY REFERENCES Company(CName));

-- Let’s attempt to delete a tuple from Company. This is the default behavior. But could be defined differently (if interested book 7.1.2)
delete Company
where CName = 'Canon';
Msg 547, Level 16, State 0, Line 2
The DELETE statement conflicted with the REFERENCE constraint "FK__Product__Manufac__164452B1". The conflict occurred in
database "TestExamples", table "dbo.Product", column 'Manufacturer'.
The statement has been terminated.

-- Queries with DISTINCT and ORDER BY
select DISTINCT category
from Product
order by pName;

category
Gadgets
Household
Gadgets
Photography

-- This query creates a syntax error. (To be more specific, the error happens during the semantic analysis of the query)
select DISTINCT category
from Product
order by pName;

Msg 145, Level 15, State 1, Line 1
ORDER BY items must appear in the select list if SELECT DISTINCT is specified.

Lecture	
 2:	
 Conceptual	
 query	
 evaluation	

-- Create new tables

if exists (select table_name
 from information_schema.tables
 where table_name= 'R') drop table R;
if exists (select table_name
 from information_schema.tables
 where table_name= 'S') drop table S;
if exists (select table_name
 from information_schema.tables
 where table_name= 'T') drop table T;

create table R (a int);
create table S (a int);
create table T (a int);

insert into R values (1);
insert into R values (2);
insert into R values (3);
insert into R values (4);
insert into R values (5);
insert into S values (4);
insert into S values (5);
insert into S values (6);
insert into S values (7);

-- Look for intersection between R and S. Note that are two result tuples (the first line is the attribute name)
select DISTINCT R.a
from R, S
where R.a=S.a;

a
4
5

-- The following query delivers an empty result. Seems counterintuitive if we just think about the logics

select DISTINCT R.a
from R, S, T
where R.a=S.a
 or R.a=T.a

a

-- After inserting a single tuple into T (that has nothing to do with R and S), the query again gives the original 2 tuples.

insert into T values (10);

select DISTINCT R.a
from R, S,T
where R.a=S.a
 or R.a=T.a

a
4
5

Lecture	
 2:	
 Nested	
 queries	
 in	
 select	
 clause	

Product (pname, price, cid)
Company (cid, cname, city)

-- Create tables for slightly changed schema.

if exists (select table_name
 from information_schema.tables
 where table_name= 'Product') drop table Product;
if exists (select table_name
 from information_schema.tables
 where table_name= 'Company') drop table Company;

create table Product (
 pname char(20),
 price int,
 cid int);
create table Company (
 cid int,
 cname char(20),
 city char(20));

insert into Product values ('Gelato', 11, 1);
insert into Product values ('Gelato', 12, 2);
insert into Product values ('Baguette', 3, 3);
insert into Company values (1, 'Francesco', 'Roma');
insert into Company values (2, 'Frederico', 'Roma');
insert into Company values (3, 'Francois', 'Paris');

select * from Product;

select * from Company;

pname price cid
Gelato 11 1
Gelato 12 2
Baguette 3 3

cid cname city
1 Francesco Roma
2 Frederico Roma
3 Francois Paris

-- This query can produce runtime errors, depending on the database instance. Over this instance ir runs.
select P.pname, (select C.city
 from Company C
 where C.cid = P.cid)
from Product P

pname (No column name)
Gelato Roma
Gelato Roma
Baguette Paris

-- Slight variation.
select DISTINCT P.pname, (select C.city
 from Company C
 where C.cid = P.cid)
from Product P

pname (No column name)
Baguette Paris
Gelato Roma

-- Now let's change one value ("update one tuple") in the database.
update Company
set city = 'Pisa'
where cid= 2;

select * from Company;

cid cname city
1 Francesco Roma
2 Frederico Pisa
3 Francois Paris

-- The query still executes fine
select P.pname, (select C.city
 from Company C
 where C.cid = P.cid)
from Product P

pname (No column name)
Gelato Roma
Gelato Pisa
Baguette Paris

-- Now let's change back to original 'Roma' value, but change the id (for whatever reason)
update Company
set city = 'Roma'
where cid= 2;
update Company
set cid = 1
where cid= 2;

select * from Company;

cid cname city
1 Francesco Roma
1 Frederico Roma
3 Francois Paris

-- Now, the query does not execute. We get a runtime error.

select P.pname, (select C.city
 from Company C
 where C.cid = P.cid)
from Product P

Msg 512, Level 16, State 1, Line 1
Subquery returned more than 1 value. This is not permitted when the subquery follows =, !=, <, <= , >, >= or when the subquery is used
as an expression.

-- Unnesting makes it work
select P.pname, C.city
from Product P, Company C
where C.cid = P.cid

pname (No column name)
Gelato Roma
Gelato Roma
Baguette Paris

-- Let's just add a little DISTINCT in the nested query. What is happening here.
select P.pname, (select DISTINCT C.city
 from Company C
 where C.cid = P.cid)
from Product P
-- Think about the conceptual evaluation strategy as follows: The query starts from the "FROM Product" clause. There is no "WHERE
…" clause, so all tuples are given to the "SELECT …" clause. For the second tuple, the query can find a pname = 'Gelato', but no
matching result from the nested subquery. Hence a NULL.
-- In a side remark I said something different on Wednesday. Sorry!

pname (No column name)
Gelato Roma
Gelato NULL
Baguette Paris

-- Let's just add one more tuple into the original database. To keep track of the database instance, let’s start all over from scratch.
if exists (select table_name
 from information_schema.tables
 where table_name= 'Product') drop table Product;
if exists (select table_name
 from information_schema.tables
 where table_name= 'Company') drop table Company;

create table Product (
 pname char(20),

 price int,
 cid int);
create table Company (
 cid int,
 cname char(20),
 city char(20));

insert into Product values ('Gelato', 11, 1);
insert into Product values ('Gelato', 12, 2);
insert into Product values ('Baguette', 3, 3);
insert into Product values ('Fish Soup', 29, 4); -- new tuple
insert into Company values (1, 'Francesco', 'Roma');
insert into Company values (2, 'Frederico', 'Roma');
insert into Company values (3, 'Francois', 'Paris');

select * from Product;
select * from Company;

pname price cid
Gelato 11 1
Gelato 12 2
Baguette 3 3
Fish Soup 29 4

cid cname city
1 Francesco Roma
2 Frederico Roma
3 Francois Paris

-- The query still executes fine, but returns the NULL, because it considers each tuple from Product.
select P.pname, (select C.city
 from Company C
 where C.cid = P.cid)
from Product P

pname (No column name)
Gelato Roma
Gelato Pisa
Baguette Paris
Fish Soup NULL

-- Unnesting makes it work without the NULL. Now the conceptual evaluation strategy iterates over the crossproduct between both tables
(both tables appear in the "FROM clause"). Only those joins pass the "WHERE clause", which finds mates through the join. No NULL
returned.

select P.pname, C.city
from Product P, Company C
where C.cid = P.cid

pname (No column name)
Gelato Roma
Gelato Pisa
Baguette Paris

… to be continued. Or feel free to play around. Learning by doing. Learning by playing.

Lecture	
 3:	
 Aggregates	

Purchase (product, price, quantity)

-- Reason why we always use this conditional delete at the beginning is that it is just comfortable: If the table already exists, it gets
deleted ("dropped"). That way one can execute the whole grayed out area over and over again. You do not need to know that. Stuff like
that, one can look up.

if exists (select table_name
 from information_schema.tables
 where table_name= 'Purchase') drop table Purchase;

create table Purchase (
 product char(20),
 price int,
 quantity int);

insert into Purchase values ('Bagel', 3, 20);
insert into Purchase values ('Bagel', 2, 20);
insert into Purchase values ('Banana', 1, 50);
insert into Purchase values ('Banana', 2, 10);
insert into Purchase values ('Banana', 4, 10);

select * from Purchase;

product price quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

-- First, let’s look at a few very simple examples
select count(product)
from Purchase

(No column
name)
5

select count(DISTINCT product)
from Purchase

(No column
name)
2

-- Following makes less sense, but still possible
select sum(DISTINCT quantity)
from Purchase

(No column
name)
80

-- Simple Aggregate group by query
select product, sum(quantity) as TotalSales
from Purchase
where price > 1
group by product

Product TotalSales
Bagel 40
Banana 20

-- Nested query that is equivalent to aggregate group by query
select distinct x.product,
 (select sum(y.quantity)
 from Purchase y
 where x.product = y.product
 and price > 1) as TotalSales
from Purchase x
where price > 1

Product TotalSales
Bagel 40
Banana 20

-- Why do we need twice the "price > 1" condition before: So let's insert one more product (with price not > 1) and see the problem if we
leave out the outer price > 1 or the inner price > 1. This should be very revealing what is going on.

insert into Purchase values ('Bubble Gum', 1, 100);

select * from Purchase;

product price quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10
Bubble Gum 1 100

-- We issue the changed query. SUM here returns NULL
select distinct x.product,
 (select sum(y.quantity)
 from Purchase y

 where x.product = y.product
 and price > 1) as TotalSales
from Purchase x

Product TotalSales
Bagel 40
Banana 20
Bubble Gum NULL

-- On a side remark, COUNT returns 0 here.
select distinct x.product,
 (select count(y.quantity)
 from Purchase y
 where x.product = y.product
 and price > 1) as TotalSales
from Purchase x

Product TotalSales
Bagel 2
Banana 2
Bubble Gum 0

-- Next let’s leave the inner “price > 1” condition away
select distinct x.product,
 (select sum(y.quantity)
 from Purchase y
 where x.product = y.product) as TotalSales
from Purchase x
where price > 1

Product TotalSales
Bagel 40
Banana 70

-- Aggregate with having.
select product,
 sum(quantity) as SumQuantity,
 max(price) as MaxPrice
from Purchase
group by product
having sum(quantity) > 50

product SumQuantity MaxPrice
Banana 70 4
Bubble Gum 100 1

-- Aggregate with having. Question from class: Can we include an aggregate condition even if we do not include this aggregate in the
SELECT clause. I was hesiting in class. Answer should have been an unconditional: yes we can. The thing that should gude the answer is
the evaluation strategy on slide 12 of lecture 12. SQL checks the conditions on the grouping via HAVING before (!) it determines what to
output through the SELECT
select product,
 max(price) as MaxPrice -- we remove the sum (quantity)
from Purchase
group by product
having sum(quantity) > 50 -- but still keep it in the HAVING clause

product MaxPrice
Banana 4
Bubble Gum 1

-- But we can make the DMBS easily unhappy by having an attribute in the SELECT which is not in the GROUP BY
select product,
 price
from Purchase
group by product

Msg 8120, Level 16, State 1, Line 2
Column 'Purchase.price' is invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause.

Lecture	
 3:	
 NULLS	

Product (pname, price, cid)
Company (cid, cname, city)

-- Create tables for slightly changed schema.

if exists (select table_name
 from information_schema.tables
 where table_name= 'Product') drop table Product;
if exists (select table_name
 from information_schema.tables
 where table_name= 'Company') drop table Company;

create table Product (
 pname char(20),
 price int,
 cid int);
create table Company (
 cid int,
 cname char(20),
 city char(20));

insert into Product values ('Gelato', 11, 1);
insert into Product values ('Gelato', 12, 2);
insert into Product values ('Baguette', 3, 3);
insert into Product values ('Baklava', 10, NULL);
insert into Company values (1, 'Francesco', 'Roma');
insert into Company values (2, 'Frederico', 'Roma');
insert into Company values (3, 'Francois', 'Paris');
insert into Company values (4, 'Luis', NULL);
insert into Company values (5, 'Greco', NULL);
insert into Company values (6, 'Thomas', 'Berlin');

select * from Product;

select * from Company;

pname price cid
Gelato 11 1
Gelato 12 2
Baguette 3 3
Baklava 10 NULL

cid cname city
1 Francesco Roma
2 Frederico Roma
3 Francois Paris
4 Luis NULL
5 Greco NULL
6 Thomas Berlin

Q:Find the number of companies in each city.

-- Unnested version. SQLserver groups the NULLs together.
select city, count(*)
from Company
group by city

city (No column name)
NULL 2
Berlin 1
Paris 1
Roma 2

-- Nested version. It still outputs the NULL, but the inner loop cannot match anything to NULL, because “NULL = NULL” is always
false (this was also a short student question in lecture 2).

select DISTINCT city, (select count(*)
 from Company Y
 where X.city = Y.city)
from Company X

city (No column name)
NULL 0
Berlin 1
Paris 1
Roma 2

-- Joins ignore NULL (same reason as above)
select *
from Company X, Product Y
where X.cid = Y.cid

cid cname city pname price cid
1 Francesco Roma Gelato 11 1
2 Frederico Roma Gelato 12 2
3 Francois Paris Baguette 3 3

Q: Find the number of products made in each city.

select X.city, count(*)

from Company X, Product Y
where X.cid = Y.cid
group by X.city

city (No column name)
Paris 1
Roma 2

-- COUNT initializes from 0.
select DISTINCT X.city, (select count(*)
 from Product Y, Company Z
 where Z.cid = Y.cid

 and Z.city = X.city)
from Company X

city (No column name)
NULL 0
Berlin 0
Paris 1
Roma 2

Optional:	
 how	
 COUNT	
 and	
 SUM	
 are	
 initialized	

Product(pname, category)
Purchase(prodName, month, store)

-- Create tables for slightly changed schema.

if exists (select table_name
 from information_schema.tables
 where table_name= 'Product') drop table Product;
if exists (select table_name
 from information_schema.tables
 where table_name= 'Purchase') drop table Purchase;

create table Product (
 pname char(20),
 category char(20));
create table Purchase (
 prodName char(20),
 month char(20),
 store char(20));

insert into Product values ('Gelato', 'food');
insert into Product values ('Baguette', 'food');
insert into Product values ('Baklava', 'food');

insert into Purchase values ('Gelato', 'September', 'Francesco');
insert into Purchase values ('Baguette', 'September', 'Francois');
insert into Purchase values ('Baguette', 'September', NULL);

select * from Product;

select * from Purchase;

pname category

Gelato food
Baguette food
Baklava food

prodName month store
Gelato September Francesco
Baguette September Francois
Baguette September NULL

Q: Compute, for each product, the total number of sales in ‘September’

SELECT Product.pname, count(*)
 FROM Product, Purchase
 WHERE Product.pname = Purchase.prodName
 and Purchase.month = 'September'
 GROUP BY Product.pname

pname (No column name)
Baguette 2
Gelato 1

-- First with count(store)
 SELECT Product.pname, count(store)
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.pname = Purchase.prodName
 and Purchase.month = 'September'
 GROUP BY Product.pname

pname (No column name)
Baguette 1
Baklava 0
Gelato 1

-- Then with count(store)
 SELECT Product.pname, count(month)
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.pname = Purchase.prodName
 and Purchase.month = 'September'
 GROUP BY Product.pname

pname (No column name)
Baguette 2
Baklava 0
Gelato 1

-- Then with count(*)
 SELECT Product.pname, count(*)
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.pname = Purchase.prodName
 and Purchase.month = 'September'
 GROUP BY Product.pname

pname (No column name)
Baguette 2

Baklava 1
Gelato 1

Person-­‐bar-­‐drink	

Background: The original and commonly used schema is
Likes (drinker, beer)
Frequents (drinker, bar)
Serves (bar, beer)

We use here instead
Likes (person, drink)
Frequents (person, bar)
Serves (bar, drink)

to ensure that all attributes start with different letters (nothing personal against beer). That allows to abbreviate the schema in the logical
representation (not relevant for now) as
L(p,d)
F(p,b)
S(b,d)
and we have unique letters. That simplifies stuff. Thus, we have (d,b,b) -> (p,b,d). Not relevant.

create table Likes(person varchar(20), drink varchar(20))
create table Frequents(person varchar(20), bar varchar(20))
create table Serves(bar varchar(20), drink varchar(20))

insert into Likes values ('Alice', 'Whitebeer');
insert into Likes values ('Bob', 'Brownbeer');
insert into Likes values ('Charlie', 'Whitebeer');
insert into Likes values ('Charlie', 'Blackbeer');

insert into Serves values ('Groundbar', 'Whitebeer');
insert into Serves values ('Seabar', 'Whitebeer');
insert into Serves values ('Seabar', 'Blackbeer');
insert into Serves values ('Skybar', 'Whitebeer');
insert into Serves values ('Skybar', 'Brownbeer');
insert into Serves values ('Skybar', 'Blackbeer');

insert into Frequents values ('Alice', 'Seabar');
insert into Frequents values ('Alice', 'Skybar');
insert into Frequents values ('Bob', 'Groundbar');
insert into Frequents values ('Bob', 'Seabar');
insert into Frequents values ('Charlie', 'Seabar');

1	
 Find	
 persons	
 that	
 frequent	
 some	
 bar	
 that	
 serves	
 some	
 drink	
 they	
 like.	

Note we ignore here the DISTINCT to see what is happening. In any "real" example, you should use DISTINCT. Please don’t forget J

-- Find persons that frequent some bar that serves some drink they like.
select F.person

from Frequents F, Likes L, Serves S
where F.person = L.person
and F.bar = S.bar
and L.drink = S.drink

person
Alice
Alice
Charlie
Charlie

-- Above is unnested version of this here.
select F.person
from Frequents F
where exists
 (select *
 from Serves S
 where S.bar = F.bar
 and exists
 (select *
 from Likes L
 where L.person = F.person
 and S.drink = L.drink))

person
Alice
Alice
Charlie

2	
 Find	
 persons	
 that	
 frequent	
 only	
 bars	
 that	
 serve	
 some	
 drink	
 they	
 like.	

-- Find persons that frequent only bars that serve some drink they like:
select F1.person
from Frequents F1
where not exists
 (select *
 from Frequents F2
 where F2.person = F1.person
 and not exists
 (select *
 from Serves S3, Likes L4
 where L4.person = F1.person -- alternatively use F2 here instead of F1
 and S3.drink = L4.drink
 and S3.bar = F2.bar))

person
Alice
Alice
Charlie

3	
 Find	
 persons	
 that	
 frequent	
 some	
 bar	
 that	
 serves	
 only	
 drinks	
 they	
 like.	

select F.person
from frequents F
where not exists
 (select *
 from serves S
 where F.bar = S.bar
 and not exists
 (select *
 from Likes L
 where L.person=F.person
 and S.drink = L.drink))

person
Charlie

4	
 Find	
 persons	
 that	
 frequent	
 only	
 bars	
 that	
 serve	
 only	
 drinks	
 they	
 like	

…

OUT:	
 example	
 database	
 from	
 Chakravarthy	
 PDF	

Schema:
Likes (person, drink)
Frequents (person, bar)
Serves (bar, drink)

SQL inserts:
create table Likes(person varchar(20), drink varchar(20))
create table Frequents(person varchar(20), bar varchar(20))
create table Serves(bar varchar(20), drink varchar(20))

insert into Likes values ('Charles', 'Michelob')
insert into Likes values ('Charles', 'Bud')
insert into Likes values ('Mickey', 'Michelob')
insert into Likes values ('Tracy', 'Natural')
insert into Likes values ('Tracy', 'Bud')
insert into Likes values ('Mallory', 'Natural')
insert into Likes values ('Mallory', 'Michelob')
insert into Likes values ('Mallory', 'Root')
insert into Likes values ('Alex', 'Natural')
insert into Likes values ('Alex', 'Michelob')
insert into Likes values ('Brian', 'Michelob')

insert into Frequents values ('Charles', 'Purple Purpoise')
insert into Frequents values ('Charles', 'Orange-and-Brew')
insert into Frequents values ('Charles', 'Kaos')
insert into Frequents values ('Mickey', 'Kaos')
insert into Frequents values ('Tracy', 'Orange-and-Brew')

insert into Frequents values ('Tracy', 'Kaos')
insert into Frequents values ('Tracy', 'Cafeteria')
insert into Frequents values ('Mallory', 'Orange-and-Brew')
insert into Frequents values ('Alex', 'Orange-and-Brew')
insert into Frequents values ('Brian', 'Orange-and-Brew')
insert into Frequents values ('Brian', 'Purple Purpoise')

insert into Serves values ('Purple Purpoise', 'Michelob')
insert into Serves values ('Purple Purpoise', 'Natural')
insert into Serves values ('Purple Purpoise', 'Bud')
insert into Serves values ('Kaos', 'Bud')
insert into Serves values ('Orange-and-Brew', 'Natural')
insert into Serves values ('Orange-and-Brew', 'Michelob')
insert into Serves values ('Cafeteria', 'Root')

… try to find some instance that allows you to check all 4 different queries from before and see the difference in behavior (some example
where the answer illustrates the query is correct. Not trivial, right.

