
1

CSE 451: Operating Systems
Winter 2007

Module 21
Distributed Systems

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 2

What is a “distributed system”?

• Very broad definition
– loosely-coupled to tightly-coupled

• Nearly all systems today are distributed in some way
– they use email
– they access files over a network
– they access printers over a network
– they’re backed up over a network
– they share other physical or logical resources
– they cooperate with other people on other machines
– they access the web
– they receive video, audio, etc.

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

• Economics dictate that we buy small computers
• Everyone needs to communicate
• We need to share physical devices (printers) as well

as information (files, etc.)
• Many applications are by their nature distributed

(bank teller machines, airline reservations, ticket
purchasing)

• To solve the largest problems, we will need to get
large collections of small machines to cooperate
together (parallel programming)

Distributed systems are now a requirement

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

Loosely-coupled systems

• Earliest systems used simple explicit network
programs
– FTP (rcp): file transfer program
– telnet (rlogin/rsh): remote login program
– mail (SMTP)

• Each system was a completely autonomous
independent system, connected to others on the
network

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 5

• Even today, most distributed systems are loosely-
coupled
– each CPU runs an independent autonomous OS
– computers don’t really trust each other
– some resources are shared, but most are not
– the system may look differently from different hosts
– typically, communication times are long

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 6

Closely-coupled systems

• A distributed system becomes more “closely-coupled”
as it
– appears more uniform in nature
– runs a “single” operating system
– has a single security domain
– shares all logical resources (e.g., files)
– shares all physical resources (CPUs, memory, disks,

printers, etc.)

• In the limit, a distributed system looks to the user as if
it were a centralized timesharing system, except that
it’s constructed out of a distributed collection of
hardware and software components

2

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

Tightly-coupled systems

• A “tightly-coupled” system usually refers to a
multiprocessor
– runs a single copy of the OS with a single job queue
– has a single address space
– usually has a single bus or backplane to which all

processors and memories are connected
– has very low communication latency
– processors communicate through shared memory

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

Some issues in distributed systems

• Transparency (how visible is the distribution)
• Security
• Reliability
• Performance
• Scalability
• Programming models
• Communication models

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 9

Grapevine distributed mail service

• Xerox PARC, 1980
– cf. Microsoft Outlook/Exchange today!!!!!

• Goals
– cannot rely on integrity of client
– once the system accepts mail, it will be delivered
– no single Grapevine computer failure will make the system

unavailable to any client either for sending or for receiving
mail

• Components
– GrapevineUser package on each client workstation
– Registration Servers
– Message Servers

• Implementation: Remote Procedure Call
3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

Grapevine: Functional diagram

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 11

Grapevine: Sending a message

• User prepares message using mail client
• Mail client contacts GrapevineUser package on

same workstation to actually send message
• GrapevineUser package

– contacts any Registration Server to get a list of Message
Servers

– contacts any Message Server to transmit message
• presents source and destination userids, and source

password, for authentication
– Message Server uses any Registration Server to authenticate

• sends message body to Message Server
– Message Server places it in stable storage and acknowledges

receipt

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 12

Grapevine: Transport and buffering

• For each recipient of the message, Message Server
contacts any Registration Server to obtain list of
Message Servers holding mail for that recipient

• Sends a copy of the message to one of those
Message Servers for that recipient

3

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

Grapevine: Retrieving mail

• User uses mail client to contact GrapevineUser
package on same workstation to retrieve mail

• GrapevineUser package
– contacts any Registration Server to get a list of each

Message Server holding mail for the user (“inbox site”)
– contacts each of these Message Servers to retrieve mail

• presents user credentials
– Message Server uses any Registration Server to authenticate

• acknowledges receipt of messages so that the server can
delete them from its storage

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 14

Grapevine: Scalability

• Can add more Registration Servers
• Can add more Message Servers
• Only thing that didn’t scale was handling of

distribution lists
– the accepting Message Server was responsible for

expanding the list (recursively if necessary) and delivering to
an appropriate Message Server for each recipient

– some distribution lists contained essentially the entire user
community

• Jeff Dean (Google) told us they don’t even think
about more than two decimal orders of magnitude
– fundamental design decisions will need to change
– advances in technology will make it possible

