
1

CSE 451: Operating Systems
Winter 2007

Module 23
Authentication / Authorization / Security

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 2

Terminology I: the entities

• Principals – who is acting?
– User / Process Creator
– Code Author

• Objects – what is that principal acting on?
– File
– Network connection

• Rights – what actions might you take?
– Read
– Write

• Familiar UNIX file system example:
– owner / group / world
– read / write / execute

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 3

Terminology II: the activities

• Authentication – who are you?
– identifying principals (users / programs)

• Authorization – what are you allowed to do?
– determining what access users and programs have to specific

objects

• Auditing – what happened
– record what users and programs are doing for later analysis /

prosecution

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 4

Authentication

• How does the provider of a secure service know who
it’s talking with?
– Example: login

• We’ll start with the local case (the keyboard is
attached to the machine you want to login to)

• Then we’ll look at a distributed system

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 5

Local Login

(“Local” ⇒ this connection is assumed secure)

How does the OS know that I’m ‘emmert’?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 6

Shared Secret

My dog
has fleas

Emmert:
My dog has

fleas

The shared secret is typically a password, but it could be something else:
• Retina scan
• A key

2

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 7

Simple Enough

• This seems pretty trivial

• Like pretty much all aspects of security, there are
perhaps unexpected complications

• As an introduction to this, let’s look at briefly at the
history of password use

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 8

• CTSS (1962): password file {user name, user
identifier, password}

If a bad guy gets hold of the password file, you’re in
deep trouble

– Any flaw in the system that compromises the password file
compromises all accounts!

Storing passwords

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “!ofotc2n”

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 9

Two Choices

1. Make sure there are no flaws in the system (ha!)
2. Render knowledge of the password file useless

Unix (1974): store encrypted forms of the passwords

My dog
has fleas

Emmert:
2zppQ01c

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 10

Aside on Encryption

• Encryption: takes a key and plaintext and creates ciphertext: Ek1(M) = C
• Decryption: takes ciphertext and a key and recovers plaintext: Dk2(C) = M

• Symmetric algorithms (aka secret-key aka shared secret algorithms):
– k1 = k2 (or can get k2 from k1)

• Public-Key Algorithms
– decryption key (k2) cannot be calculated from encryption key (k1)
– encryption key can be made public!

• encryption key = “public key”, decryption key = “private key”

• Computational requirements:
– Deducing M from Ek(M) is “really hard”
– Computing Ek(M) and Dk(C) is efficient

encryption decryptionplaintext (M) ciphertext (C) M

encryption key (k1) decryption key (k2)

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 11

• Encrypt passwords with passwords

• David’s password, “allison,” is encrypted using itself
as the key and stored in that form.

• Password supplied by user is encrypted with itself as
key, and result compared to stored result.

• “No problem if someone steals the file”
• Also no need to secure a key

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

K=[alison]allison

Unix Password File

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 12

The Dictionary Attack

• Encrypt many (all) possible password strings offline, and store
results in a dictionary
– I may not be able to invert any particular password, but the odds

are very high I can invert one or more

• 26 letters used, 7 letters long
– 8 billion passwords (33 bits)
– Generating 100,000/second requires 22 hours

• But most people’s passwords are not random sequences of
letters!
– girlfriend’s/boyfriend’s/spouse’s/dog’s name/words in the dictionary

• Dictionary attacks have traditionally been incredibly easy

3

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 13

Making it harder
• Using symbols and numbers and longer passwords

– 95 characters, 14 characters long
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• Require frequent changing of passwords
– guards against loaning it out, writing it down, etc.

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 14

Do longer passwords work?

• People can’t remember 14-character strings of
random characters

• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk
• If you are forced to change your password

periodically, you probably choose an even dumber
one
– “feb04” “mar04” “apr04”

• How do we handle this in CSE?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 15

• Unix (1979): salted passwords
– The salt is just a random number from a large space

Encryption is computed after affixing a number to the
password. Thwarts pre-computed dictionary attacks

Bob: 14: T7Vs1dZEWeRcL: 45
David: 15: K3AJ5ocCM4ZM$: 392
Mary: 16: WX3crwUbmCKLf: 152

K=[alison392]allison392

Countermeasure to the Dictionary Attack:
Salt

Okay, are we done? Problem solved?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 16

Attack Models

• Besides the problems already mentioned that
obviously remain (people give out their passwords /
write them down / key loggers / …), there may be
other clever attacks that we haven’t thought of

• Attack Model: when reasoning about the security of a
mechanism, we typically need to carefully describe
what kinds of attacks we’re thinking of
– helps us reason about what vulnerabilities still remain

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 17

Example 1: Login spoofers

• Login spoofers are a specialized class of Trojan
horses
– Attacker runs a program that presents a screen identical to

the login screen and walks away from the machine
– Victim types password and gets a message saying

“password incorrect, try again”

• Can be circumvented by requiring an operation that
unprivileged programs cannot perform
– E.g., start login sequence with a key combination user

programs cannot catch, CTRL+ALT+DEL on Windows

• False fronts have been used repeatedly to steal bank
ATM passwords!

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 18

Example 2: Page faults as a signal

• VMS (early 80’s) password checking flaw

– password checking algorithm:
for (I=0; I<password.length(); I++) {

if password[I] == supplied_password[I]
return false;

}

return true;

– can you see the problem?
• hint: think about virtual memory…
• another hint: think about page faults…
• final hint: who controls where in memory supplied_password

lives?

4

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 19

Distributed Authentication (Single Domain)

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 20

Kerberos

Alice

A, Request for TGT

{A, SKAS, {TGT}KTGS}Kas

Na,“A”,”B”, {TGT}KTGS

{Na, B, Kab, {Kab, A}Kbs}SKAS

{Kab, A}Kbs

{Data}Kab

Ticket Granting
Service

Authentication
Server

Client
Key DB

Print Server (B)
At this point Alice and the server

have a shared secret

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 21

Trust Relationships

• Both Alice and the server must trust the Kerberos servers (“trusted third
party”)

• This architecture is essentially what Microsoft passport is:

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 22

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 23

Distributed Authentication at World Scale

• Bill Gates wants to login to his Citibank account to
move $10 from savings to checking

• Both Bill and Citibank are worried:
– Citibank:

• How do I know that I’m talking with Bill?
• Does Bill have $10 in his savings account?
• …

– Bill:
• How do I know that I’m talking with Citibank?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 24

Man in the Middle Attack

www.citibank.com
www.yegg.org

⇐ Get login page
⇒ Login page. Password?
⇐ Here’s my password

5

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 25

Authentication Solutions

• Citibank authenticating Bill
– This is just a client accessing a server. Citibank can use

shared secrets.
• Bill has to use some secret communicated out-of-band (e.g.,

ATM PIN number) to create a shared secret for online access.

• Bill authenticating Citibank
– Could shared secret work for the bank to authenticate itself

to the client?
• …

– In the end, we rely on a trusted third party (just like
Kerberos, but implemented differently)

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 26

Why not this?

Citibank Client

Bill, {N,Login}KBill

{N, KS, Password?}KCiti

{N, Password}KS

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 27

Public Key Encryption

• Key pairs, KPublic / KPrivate
– {{M}KPublic}KPrivate = {{M}KPrivate}KPublic = M

• Each key is the decryption key for the other used as an
encryption key

– It is computationally infeasible to deduce KPrivate from
KPublic

• You can distribute KPublic freely

• {M}KPublic can be decrypted only by the holder of the
private key

• {M}KPrivate can be created only by the holder of the
private key
– “Signing”

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 28

Authentication by Certificate: Basic Idea

Trusted
Third
Party

Citibank Client

Documents

Digital Certificate
w/ KCitiPublic

Get login

Password?

Password

• Much more is need for this to actually work
• E.g., what keeps yegg.com from copying

the certificate?

• Why not have the client contact the TTP directly to
obtain the certificate at the outset?

• Why might you “want” to contact the TTP in any case?
KTTPPublic

TTP ⇔ KTTPPublic

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 29

Client/Server Communication: ssl (tls)

Citibank Client

Hello, NClient

Hello, NServer

{Pre-master}KServerPublic

TTP ⇔ KTTPPublic

Notes:
1. Master/session key determined independently

by both client and server as:
F(Nclient, Nserver, Pre-master)

2. I’ve taken some liberties to simplify the explanation…
(cf. CSE 461)

{Finished}KSession

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 30

The Larger Security Problem

• Integrity
My data should be protected against modification by
malicious parties
– “Modification” includes deletion

• Privacy
My data should not be disclosed without my consent

• Both issues have become much more complicated in
the last decade
– Attackers exploit bugs/weaknesses accessible through the

net
– We all run third-party code

6

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 31

Spyware

• Software that is installed that collects information and
reports it to third party
– key logger, adware, browser hijacker, …

• Installed one of two ways
– piggybacked on software you choose to download
– “drive-by” download

• your web browser has vulnerabilities
• web server can exploit by sending you bad web content

• Estimates
– majority (50-90%) of Internet-connected PCs have it
– 1 in 20 executables on the Web have it
– about 0.5% of Web pages attack you with drive-by-

downloads

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 32

kingsofchaos.com

• A benign web site for an online game
– earns revenue from ad networks by showing banners
– but, it relinquishes control of the ad content

banner ad from
adworldnetwork.com

(a legitimate ad network)

inline javascript loads
HTML from ad provider

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 33

Incident

• kingsofchaos.com was given this “ad content”
<script type="text/javascript">document.write(‘
\u003c\u0062\u006f\u0064\u0079\u0020\u006f\u006e\u0055\u006f\
u0077\u0050\u006f\u0070\u0075\u0070\u0028\u0029\u003b\u0073\u
0068\u006f\u0077\u0048\u0069 …etc.

• This “ad” ultimately:
– bombarded the user with pop-up ads
– hijacked the user’s homepage
– exploited an IE vulnerability to install spyware

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 34

What’s going on?

• The advertiser was an ex-email-spammer

• His goal:
– force users to see ads from his servers
– draw revenue from ad “affiliate programs”

• Apparently earned several millions of dollars

• Why did he use spyware?
– control PC and show ads even when not on the Web

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 35

Principle of Least Privilege

• Figure out exactly which capabilities a program
needs to run, and grant it only those
– start out by granting none

• run program, and see where it breaks
• add new privileges as needed.

• Unix: concept of root is not a good example of this
– some programs need root just to get a small privilege

• e.g., FTP daemon requires root:
– to listen on network port < 1024
– to change between user identities after authentication

• but root also lets you read any file in filesystem

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 36

Principle of Complete Mediation

• Check every access to every object
– in rare cases, can get away with less (caching)

• but only if sure nothing relevant in environment has
changed…and there is a lot that’s relevant!

• A TLB caches access control information
– page table entry protection bits
– is this a violation of the principle?

7

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 37

Modern security problems

• Confinement
– How do I run code that I don’t trust?

• e.g., RealPlayer, Flash
– How do I restrict the data it can communicate?
– What if trusted code has bugs?

• e.g., Internet Explorer

• Solutions
– Restricted contexts – let the user divide their identity
– ActiveX – make code writer identify self
– Java – use a virtual machine that intercepts all calls
– Binary rewriting – modify the program to force it to be safe

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 38

Restricted contexts

• Role-based access control (RBAC)
– Add extra identity information to a process

• e.g., both username and program name (mikesw:navigator)
– Use both identities for access checks

• add extra security checks at system calls that use program
name

• add extra ACLs on objects that grant/deny access to the
program

– Allows users to sub-class themselves for less-trusted
programs

• chroot

• Browse in a VMWare machine

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 39

ActiveX

• All code comes with a public-key signature
• Code indicates what privileges it needs
• Web browser verifies certificate
• Once verified, code is completely trusted

Code

Signature / Certificate

Permissions

Written by HackerNet
Signed by VerifySign

Let JavaScript call this

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 40

Java / C#

• All problems are solved by a layer of indirection
– All code runs on a virtual machine
– Virtual machine tracks security permissions
– Allows fancier access control models - allows stack walking

• Interposition using language VM doesn’t work for other
languages

• Virtual machines can be used with all languages
– Run virtual machine for hardware
– Inspect stack to determine subject for access checks

3/4/2007 © 2007 Gribble, Lazowska, Levy, Swift, Zahorjan 41

Binary rewriting

• Goal: enforce code safety by embedding checks in
the code

• Solution:
– Compute a mask of accessible addresses
– Replace system calls with calls to special code

Original Code:

lw $a0, 14($s4)
jal ($s5)
move $a0, $v0
jal $printf

Rewritten Code:

and $t6,$s4,0x001fff0
lw $a0, 14($t6)
and $t6,$s5, 0x001fff0
jal ($t6)
move $a0, $v0
jal $sfi_printf

