
1

CSE 451: Operating Systems
Winter 2007

Module 8
Deadlock

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 2
(Is Google the greatest, or what?)

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

Definition

• A thread is deadlocked when it’s waiting for an event
that can never occur
– I’m waiting for you to clear the intersection, so I can proceed

• but you can’t move until he moves, and he can’t move until she
moves, and she can’t move until I move

– thread A is in critical section 1, waiting for access to critical
section 2; thread B is in critical section 2, waiting for access
to critical section 1

– I’m trying to book a vacation package to Tahiti – air
transportation, ground transportation, hotel, side-trips. It’s
all-or-nothing – one high-level transaction – with the four
databases locked in that order. You’re trying to do the same
thing in the opposite order.

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

Requirements

1. Mutual Exclusion

2. Hold and Wait

3. No Preemption

4. Circular Wait

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 5

Resource graph

• A deadlock exists if there is an irreducible cycle in the
resource graph (such as the one above)

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 6

Graph reduction

• A graph can be reduced by a thread if all of that
thread’s requests can be granted
– in this case, the thread eventually will terminate – all

resources are freed – all arcs (allocations) to it in the graph
are deleted

• Miscellaneous theorems (Holt, Havender):
– There are no deadlocked threads iff the graph is completely

reducible
– The order of reductions is irrelevant

• (Detail: resources with multiple units)

2

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

Resource allocation graph with no cycle

Silberschatz, Galvin and Gagne ©2002

What would cause a
deadlock?

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne ©2002

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 9

Resource allocation graph with a cycle
but no deadlock

Silberschatz, Galvin and Gagne ©2002 1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

Approaches to Deadlock

• Break one of the four required conditions
– Mutual Exclusion?
– Hold and Wait?
– No Preemption?
– Circular Wait?

• Broadly classified as:
– Prevention (static), or
– Avoidance (dynamic), or
– detection (and recovery)

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 11

Prevention (static)
• Hold and Wait

• each thread obtains all resources at the beginning; blocks
until all are available
• drawback?

• Circular Wait
• resources are numbered; each thread obtains them in

sequence (which means acquiring some before they are
actually needed)
• why does this work?
• pros and cons?

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 12

Avoidance (dynamic)

• Circular Wait
– each thread states its maximum claim for every resource

type
– system runs the Banker’s Algorithm at each allocation

request
• Banker ⇒ incredibly conservative
• if I were to allocate you that resource, and then everyone were

to request their maximum claim for every resource, could I find
a way to allocate remaining resources so that everyone
finished?

– More on this in a moment…

3

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

• every once in a while, check to see if there’s a
deadlock
– how?

• if so, eliminate it
– how?

Detection and recovery

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 14

Avoidance: Banker’s Algorithm example

• When a request is made
– pretend you granted it
– pretend all other legal requests were made
– can the graph be reduced?

• if so, allocate the requested resource
• if not, block the thread

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

1. I request a pot

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 16

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 17

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

2. You request a pot

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 18

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

4

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 19

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

3a. You request a pan

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 20

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

NO! Both of us might be
unable to complete!

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 21

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

3b. I request a pan

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 22

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 23

Current practice

• Microsoft SQL Server
– “The SQL Server Database Engine automatically detects

deadlock cycles within SQL Server. The Database Engine
chooses one of the sessions as a deadlock victim and the
current transaction is terminated with an error to break the
deadlock.”

• Oracle
– As Microsoft SQL Server, plus “Multitable deadlocks can

usually be avoided if transactions accessing the same tables
lock those tables in the same order... For example, all
application developers might follow the rule that when both a
master and detail table are updated, the master table is
locked first and then the detail table.”

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 24

• Windows internals (Linux no different)
– “Unless they did a huge change in Vista (and from what I've

heard they haven't modified this area), the NT kernel
architecture is a deadlock minefield. With the multi-threaded
re-entrant kernel there is plenty of deadlock potential.”

– “Lock ordering is great in theory, and NT was originally
designed with mutex levels, but they had to be abandoned.
Inside the NT kernel there is a lot of interaction between
memory management, the cache manager, and the file
systems, and plenty of situations where memory
management (maybe under the guise of its modified page
writer) acquires its lock and then calls the cache manager.
This happens while the file system calls the cache manager
to fill the cache which in turn goes through the memory
manager to fault in its page. And the list goes on.”

5

1/30/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 25

Summary

• Deadlock is bad!

• We can deal with it either statically (prevention) or
dynamically (avoidance and detection)

• In practice, you’ll encounter lock ordering, periodic
deadlock detection/correction, and minefields

