UNICORN WEBCAM SEARCH
Caesar Indra

Tilakbahadur Paija Pun

Vivek Rajkumar

Abstract

This paper describes a search engine built for web cameras. Webcams have increased in popularity over the last few years, yet there are few directories and search engines for webcams. In addition, most of them do not consider factors beyond the text content of a page. Not all pages that contain the term “webcam” deliver actual webcam content. To address this problem, we have built our own classifier in order to decide whether or not an HTML page is a webcam page. We also compare the accuracy of our classifier to that of a rule-based classifier. We find that our classifier has a lower rate of false positives. In addition, we allow users to find webcams by country or city.

1.
Introduction
Webcams that serve viewers with continuously updating images or streaming video have become increasingly popular in the past few years. With cheaper hardware and bandwidth, it has become quite easy for an individual to purchase and set one (or multiple ones) up. All types of webcams exist – home cams, beach cams, tourist cams, zoo cams, personal cams, etc. Indeed, there are such a vast number of them with different purposes that finding a relevant webcam might prove difficult. There are webcam directories
 that are searchable, but these searches usually just consider the text content of the page, rather than factors like the refresh rate/update frequency of the webcam, the location of the webcam, the direction the webcam is facing, etc.

To address this, we expanded upon Nutch
 to build a webcam search engine that allowed users to find webcams by location. In order to search by location, we converted an URL of a page to an IP address, and then to a specific country
. In addition, we built our own classifier for the indexing of pages. We compare the performance (accuracy) of our classifier to the accuracy of a rule-based classifier (derived from running one of the rule generating algorithms of Open Source Data Mining software, called Weka).

Architecture

There are 5 major “stages” to Nutch (and probably most search engines) – fetching, database maintenance, link analysis, indexing, and searching.
 We concentrated mostly on changes to the link analysis and indexing stages. For one, the implementation of a new ranking algorithm would have to take place in the analysis stage. Scores and ranks are given to pages in order of how relevant they might be to some search query. This is quite related to the indexing stage as well. In particular, our new classifier was inserted in this stage of Nutch. Whenever we consider a page for indexing, we pass it over to our classifier. If we find that the page passes (is considered a webcam page), then we index it. If the page fails the classifying test, we ignore it.

2.
Classifier
Our classifier is based on the idea that pages that contain a webcam will also contain the term ‘cam’ frequently, either in the title (4 points) or the body (3 points). In addition, we also consider the refresh rate of the page (by looking at the refresh meta-tag), based on the idea that pages that provide non-streaming content refresh themselves frequently (5 points) so that viewers are not presented stale subject matter. Finally, we look at the image ratio (4 points) of all the images in the body. If at least one image has an image ratio between 0.8 and 1.5, then this is a bonus. If the page as a whole is assigned a score that is greater than or equal to 6 points (at least two of the conditions are met), then we index it as a page that contains a webcam. We measured the accuracy of our classifier and compared it to that of a rule-based one. We have two sets of results, the first of which is on training data (for the rule-based classifier), and the second of which is actual test data. In each set, we had an equal number of pages that were actual webcam pages, and pages that were not webcam pages. In addition, we tried to find good examples of “not webcam” pages – pages that contained the term “webcam” or “cam” a lot, but didn’t actually feature any web cameras. Such pages include pages that sold webcams or contained multiple instances of the word “cam” for the sake of attracting visitors. These pages should ideally not be indexed.

We would have liked to implement a Naïve Bayes Classifier and see how such classifier performed. The issue with analyzing the html content of the webcam pages was that there were so many variations and formats that one would have to consider. For example, some image tags did not contain the usual height and width fields, and yet they contained webcams. Some webcams appeared in frames and we could not find a way to get access to the html sources. In sum, coming up with as many features as possible and implementing a Naïve Bayes Classifier based on those features might produce better results. This is something that we feel we would do differently if we were to redesign our solution.

Two classifiers run Training Data:

[image: image1.png]Results for Webcam Pages

Results for Non-Webcam Pages

e %0
. .

Our classifier Rule-Based Classifier

B ncorrectly Classified
o Correctly Clsssified

Our classifier

Rule-Based Classifier

Two classifiers run on Test Data:

[image: image2.png]Results for Webcam Pages

Results for Non-Webcam Pages

80 a0
70 0
s zw
i Ers
. o

Our classifier Rule-Based Classifier

B ncorrectly Classified
o Correctly Clsssified

Our classifier

Rule-Based Classifier

As should be the case, our classifier’s accuracy does not change between the training data and the test data, since we are not considering previous history. However, the performance of the rule-based classifier does change – in fact, it deteriorates, for both webcam and non-webcam pages. One possibility for the deterioration of rule-based classifier on test data could be that the number of training data considered was not significantly large. We considered only twenty pages (10 webcam and 10 non-webcam) in order to generate the rules. Out of the four features selected and fed to the Weka for these twenty pages, Weka found only one feature, i.e. “webcam” in the title of a page, as significant. Therefore, we implemented that particular rule-based classifier based on this rule. As such, we call it a rule-based classifier.

Our classifier missed some webcam pages
 that should have been indexed as such. However, it did not have many false positives – i.e. it did not classify many non-webcam pages as webcam pages. The reason for this is our classifier threshold. This threshold provided an interesting trade-off. On the one hand, keeping the threshold high would mean ignoring certain webcam pages. On the other, having a low threshold would mean indexing certain non-webcam pages. In the end, we were willing to lose some actual webcam pages so that we didn’t have to worry about false positives. We reasoned that since there were so many pages dedicated to webcams, that we could impose a stricter threshold to improve our degree of certainty and accuracy. However, we didn’t do any thorough statistical analysis of the relevance of the pages we were losing (not indexing) compared to the low percentage of false positives. Future work should consider this.

3.
Location

We allow the user to search for webcams by country or city. During the indexing stage, we map the original URL of a page to an IP address, after which we map the IP address to a country name.
 We make use of the fact that each country has a set number of possible IP addresses, with an upper and lower bound. For each IP address translated from a URL, we find the country whose range contains this IP address. Thus, every page in our index has a country name associated with it. This also necessitated a small change to Nutch architecture. Before, there were some default fields such as DocumentNumber, Title, URL, etc for every page. We added a field for the country name as well. Though, we did not conduct any empirical study to determine whether results for a certain country query returned webcams that belonged to that country, our mere observation showed that the results returned were accurate.

As for the implementation of a search by city name, we could not obtain a nice mapping such as the IP address to a country name. However, we were able to download a text file containing all the world cities. We indexed all the world cities using Nutch. Since there were so many entries, we thought that indexing all the cities first would help us look up a particular city efficiently. The main idea was to help us during the indexing of the actual webcam pages. During the indexing stage of the webcam page, we looked at the title of the page, retrieved a word that had the first character in capital letter, and looked up that word in the database of cities. If that word appeared in the database, we stored that city name into the city field. The issue with this design was that there were several cities with the same name. And we were not able to differentiate which particular city that webcam title referred to. To solve this issue, we could include an extra feature such as the latitude and longitude of the cities so that we would be able to pin point to a particular city. However, this also meant that we would have to find a way to retrieve the latitude and longitude from the webcam page itself.

4.
Improvements
Our classifier currently does not work with dynamic pages, such as those generated with PHP, JSP or ASP. We consider just the HTML content of the page, not paying attention to additional frames or dynamically generated content (if any exists). This causes us to ignore some pages that could potentially be delivering webcam content. Indeed, this issue of dynamic pages is non-trivial since a lot of streaming webcam content is dynamic. An improvement would be to build a separate classifier specifically for dynamic pages.

Attribution
Much of the work was done communally.

Caesar Indra
Some scripts and classes

Finding of test data

Part of architecture design

Part of research

Writing of presentation and report

Gathering of results

Vivek Rajkumar

Some scripts and classes

Finding of test data

Writing of presentation and report

Part of implementation of classifier

Tilak Paija Pun (Project Manager)

Designation of work

Design of architecture

Part of Research

Part of implementation

� http://www.onlinecamera.com/ and http://www.camcentral.com are two examples

� open-source search engine: http://lucene.apache.org/nutch/

� see “Location”

� Doug Cutting Interview: http://blog.outer-court.com/archive/2004_05_28_index.html#108573025728740424

� Some relevant examples of pages are noted in the appendix

� With the help of a free database of IPs and countries provided by Maxmind

