Peek@u
Erik Bronnum (esb42@u.washington.edu)
Lee Faris (lfaris@cs.washington.edu)
Su Shen (shen321@cs.washington.edu)

Abstract
In this paper, we introduce Peek@u, a webcam search engine that is focused on accurate classification of webcam pages, and uses location information to display query results on a map based interface. The prototype is available at amlia.cs.washington.edu:4242. We used the open-source search engine Nutch as our backbone.
Finding and classifying webcams is a difficult task. There is a plethora of images on the web, in numerous file types, of varying sizes and behaviors. Webcams themselves have astonishing variety. There is no uniform method for implementation, leading to webcams that are similar in appearance, but are implemented with entirely different technologies.

Locating a webcam geographically is equally difficult. Some webcam webpages reference 20 different locations in their content. Others do not have a single word that can be linked to a location. Many pages do contain locational information, but what they lack is precision, often providing only a state or city.
We have created a search engine and interface, that can return meaningful results from both locations based, and non-location based queries.

Introduction
In tackling this project, our first challenge was to understand the webcam space, specifically, which types of webcams exist and which would most commonly be searched. We speculated that adult webcams were the most common type of webcam on the web, but because the vast majority of them are password protected, they were not our focus. What we chose to focus on instead was a class of webcams that have every-day utility. These are traffic, weather, and travel webcams. These webcams are not password protected for the most part, and are also quite numerous. All major cities have many such webcams. We also recognize that there are a large number of webcams that display indoor locations (personal or business webcams) and these are accounted for in our search results as well.
As a result, we created a webcam search engine that crawls the internet and creates a database of webcam webpages that can be searched using two different forms of queries. The first is a locational focus. If the query is locational (it contains locational keywords) we fire off a spatial search, looking for results within a geographic radius, and then display them in a location centered interface. The second is a non-locational focus. If the query does not contain locational keywords, our results are generated using the standard keyword matching method, and the interface is similar to the common interfaces seen in other search engines.
The primary challenges that we faced were: the classification of a page as a webcam page, the association of a webpage with a location, and displaying the yield of the previous two with an interface that was clean, intuitive, powerful, and information rich.
Architecture
A Parallel pipelined architecture is the overall design theme of peek@u. Our engine is broken up into five distinct parallel phases as shown in Figure 1.
[image: image1.jpg]

Figure 1
In the fetching stage the Nutch fetcher crawls the web periodically and link analysis is done. When a crawl is complete a segment is written to the database. We refer to this as a raw segment. When fetched pages are parsed for outlinks, we also parse out the tags (currently only for jpegs) and store in the database as part of the page.

During image fetching, the tags are read and fetching begins. The images are fetched multiple times to determine if they are changing and any missing height and width data is filled in. This is logically the first step in classification. A new segment with updated image status is written to the database and the old one deleted.

In classification, the image checked segments are read and passed through a Naïve Bayes classifier. The criteria that classifier is checking for can very as described in the ‘Classification’ section. Those images that have been identified as webcams are written to the database as a new (smaller) segment.
After image links have been identified as webcams, we pass them through location parsing searching for city and state names in the US as described in the ‘GeoFinder’ section. A new segment is written to the database with the labeled latitude and longitude values.

In addition to the standard indexing process, we run our GeoFinder plugin to index latitude and longitude values for later querying.

Each section of this pipeline is tied together via scripts executed by the cron daemon.

GeoFinder
GeoFinder is our module that implements geographical search. The functionality of GeoFinder can be broken down into: the parser, the indexer, and the searcher.

GeoParser
The primary function of the parser is to find locations from web pages and translate them into longitudes and latitudes. Our parser relies on Geocoder for this translation.
Geocoder
Geocoder is a project by Dan Egnor, for the Google programming contest in 2002. It contains an index which it has built with United States census data. Geocoder can query this index for specific street addresses and receive corresponding longitudes and latitudes in return. We realized that web cam pages do not typically have exact street addresses that describe their locations. Thus, we have modified Geocoder to accept queries in the form of city and state combinations (e.g. Seattle Washington).

To extract suitable candidates for querying with Geocoder we implemented the following algorithm:
1. Scan through the document and compile a list of distinct states (we do this by checking against a file of all US states). In the same scan, also build a list of sequences of consecutive words.

2. For each distinct state, execute our 1-2-3 algorithm (described below) with the sequences of words, and the state. Send all candidate queries to Geocoder, and store successfully returned longitude and latitudes in a hash map.
3. Choose the 10 highest occurring longitudes and latitudes from the hash map and associate them with the document.

The 1-2-3 Algorithm operates on a list of sequences of words and a state to generate queries for Geocoder. From each sequence words, it will generate 1, 2, and 3 tuples of consecutive words. We chose 3 because we assumed that city names will be at most 3 words. The algorithm will then append the state to the end of these tuples to form query strings.
Below is a simulation of the algorithm for this document:
 “welcome to our homepage! our Washington locations are: Seattle, Bellevue, Tacoma, and Walla Walla”

Note: We would have identified Washington as a state from the earlier step.

Each of these strings will be sent to Geocoder for querying
Washington Washington

Seattle Washington

(Success!

Seattle Bellevue Washington

Seattle Bellevue Tacoma Washington

Bellevue Washington

(Success!

Bellevue Tacoma Washington

Tacoma Washington

(Success!

Walla Washington

Walla Walla Washington

(Success!

Walla Washington

Seattle Washington, Bellevue Washington, Tacoma Washington, and Walla Walla Washington will all return longitudes and latitudes from Geocoder, and thus be associated with the page.
GeoIndexer
Our indexer is implemented via a Nutch indexing filter plugin. The indexing filter allows us to add fields to our document which will be indexed by the Nutch indexer. For any given document, we first check to see if there are any longitudes and latitudes associated with it (given by the parser from above). If longitudes and latitudes exist, we add them all to the document.
GeoSearcher
Like the indexer, our searcher is also implemented via a Nutch indexing filter plugin. The searching filter allows us to add required search criteria to the query. We start by looking for US states in the query. If one is found, we look up the longitude and latitude coordinates for the rectangle that encloses the state. At this point, the searcher also sends a message to the UI, indicating which state map should be displayed. Next, we add range queries to the search, which in turn require all resulting pages to have longitude and latitude values that lie within the range of our state rectangle.
Classification
Peek@u used a Naïve Bayes classifier for labeling web cams. When training it, several criteria are available. A generic function is made that will parse a series of words and return the best set of words to use during classification. This can be coupled with image property criteria such as width, height, and ratio. This allows separating and combining image properties, anchor text, body text, and alt text for testing different classifiers. Criteria split points are found by finding the split with the best information gain.

What we might have done differently
We used the default Nutch crawler and link analyzer for our crawls. We seeded the crawler with our positive webcam examples and let it go from there. The crawler found fewer and fewer pages that ended up having webcams on them as time progressed. It also turned out that checking if an image is changing was a great way for identifying web cams. Our time would probably have been better spent coding a focused crawler than an in-depth Naïve Bayes filter with many different criteria.

Also, several different classifiers are ready to be tested. Unfortunately, we left doing the testing until late and our server crashed preventing us from gathering comparison data.
What we did right
An Efficient Geographical Searcher
We have successfully implemented an efficient way to conduct geographical searches. Geocoder has excellent coverage of the United States and can be run locally on our machine. Additionally, our parsing algorithm runs in at most O(3nm) time, where n = the number of capitalized words and m = the number of distinct states. Actual run times are significantly lower, as the capitalized words are rarely connected in one large chain.
Creation of an Innovative Interface
One of the goals from the start was to break the mold that most search engines adhere to when displaying query results. Specifically, we wanted to create something different than simply listing each result, with some accompanying text, in a list down the page. This might be acceptable for basic internet searches, but is lacking for webcam searches.

When performing a webcam search, we decided that each result must have a thumbnail of the actual webcam image. The information provided by the summary text pales in comparison to the information a user can gather from the actual webcam image. “A picture is worth a thousand words”. In both our interfaces (locational and non-locational) we make an effort to show not only a webcam from the resulting page, but all the webcams on that page (should there be multiple).
To help add a greater scope of information to the locational results page, we include a map of the state that the query was based on, and then place markers on the locations for the resulting webcams (our precision is at the city level). Moving your mouse over a city, displays all of the results for that city in a tool tip window (for each hit, we display the webcam image and the title of the webpage, both are clickable and will take the user to the webcam page).
Overall Architecture
Our parallel pipeline architecture worked quite well for us. It allowed us to work within the Nutch framework for the most part and take advantage of the existing code. It let us keep cranking out raw crawls and image checking while we modified the code for other stages as well as stop crawling, but keep the latter stages crunching. In a ‘real’ environment we could have used the distributed NutchFileSystem and had dedicated machines working on each piece.
What we learned
Without a doubt, we have gained a much clearer picture of how search engines operate (core features) and an understanding of the difficulties faced when trying to improve a search engine. We learned that the web is conceptually a big, dirty database that can be used in many interesting ways. The webs ‘dirtiness’ is what makes it so interesting of a problem to try and solve.
We also learned not to wait until the end to run key tests and that each group needs their own server.

Future Possibilities
Proximity Search with More Options
Our current geographical search only filters results by state. It can easily be extended to search at a city or county level. One good improvement would be to allow the user set the radius of the search box. Another further improvement would be to order results based on proximity to and within the search box.
Interface Options with Google Maps
When first working on the interface for displaying the query results, we envisioned something that was built off of Google Maps similar to Paul Rademacher’s project that displays housing information from Craig’s List with a modified Google Maps interface. This proved problematic, because Google Maps is still a Beta product and the stability of the underlying code could not be counted on. Once Google Maps moves to a stable version, there are many interesting possibilities for displaying locational information.

An advantage to using Google Maps is that you can display locational information with a high level of precision. To fully leverage that, more specific locational information in the content of the webcam pages would be needed, or some better way of resolving the location of the webcam (potentially using image recognition to analyze the position of the sun).

Appendix A: Attribution

Erik Bronnum
· Created the interface

· 2 modes

· Locational

· Gathered maps, charted latitudes and longitudes

· Created marker code

· Created code for the aggregation of results located in the same city (into the same tooltip as well as the matching of colored markers to the locational results)

· Non-locational

· Created code for changing the thumbnail window to display multiple webcams from the same page

· Extensive re-working of Search.jsp

· Created State.java class

· Designed and implemented interface prototypes, with limited user testing

· Handled any of the .jsp work that needed to be done

· Created all custom images

· Created basic content for the Report and Presentation
Lee Faris
· Architecture
· Designed and implemented the parallel segmented architecture for the project.
· Database
· Wrote the utilities and made significant modifications to the database classes to support our needs.
· Implemented the image fetching stage in a scalable way
· Classifier
· Wrote a flexible Naïve Bayes classifier
· Added optional stemming options (through a library)
· Wrote a generic criteria chooser
Su Shen
· Implemented Geofinder
· Modified Geocoder to accept city state queries
· Communicated with the Author of Geocoder to acquire advice
· Implemented document parsing algorithm that
· Parses documents for location information
· Extracts longitude and latitude about the information via Geocoder
· Implemented indexing filter that allows
· Longitude and latitude to be added as fields to the document
· Become index by Nutch
· Implemented query filter to
· Extract location information from search queries
· Construct range queries to check if pages lie within the search box
· Communicate with the UI to display the correct maps
Appendix B: Other Code

Peek@u is powered by Nutch.

Erik Bronnum

· Wz_tooltip.js

· Used to display the tooltips (the windows that appear when you hover your mouse over a marker in the locational interface)

· No modification to wz_tooltip.js

· http://www.walterzorn.com/tooltip/tooltip_e.htm
· State images taken from Google Maps (http://maps.google.com/)

Lee Faris

· ImageInfo.java written by Marco Schmidt
· Available at http://www.geocities.com/marcoschmidt.geo/contact.html
· Used to get height and width information from jpegs

· Stemmer.java written by Martin Porter

· Available at http://www.tartarus.org/~martin/PorterStemmer
· Used for the porter stemming algorithm during classification

· Part of Naïve Bayes code from CSE 473 project written by Lee Faris and Don Kim

· Included in distribution

Su Shen
· Geocoder

· Used to query city state combinations and receive longitudes and latitudes.
· Information about Geocoder at: http://dan.egnor.name/google.html
· GeoPosition

· Is a Nutch plugin that serves a similar function as GeoFinder

· GeoFinder is modeled after GeoPosition in many aspects

· Information regarding GeoPosition at: http://wiki.apache.org/nutch/GeoPosition
